Digitalisation and Energy Savings

Digitalisation and the Rebound Effect – Seminar HS2020

Estimations show that digitalisation could save energy in different sectors

Overview of High-level Industry Examples

Industry examples show that digitalisation could save energy and carbon in different sectors

Sources: Global e-Sustainability Initiative. #SMARTer 2030 report, 2015. | Our World in Data, CO2 and Greenhouse Gas Emissions, report, 2020 Our World in Data, Energy, report, 2018.

September 2020

Agenda

- 1. Definition of digitalisation
- 2. Digital solutions in various sectors
 - Buildings
 - Industry
 - Transportation
 - Energy
- 3. Assessment challenges
- 4. Conclusion

Definition of digitalisation

September 2020

There are various definitions of digitalisation

Definitions of Digitalisation

Digitalisation

 Public
 The International Encyclopedia of Communication Theory and Philosophy

 "The process of using ICT to solve real life problems"
- Student at ETH
 Digitisation
"...as the material process of converting analog streams of information into digital bits..."

"Digitalisation is the **'organisational process**' or 'business process' of the **technologically-induces change** within industries, organisations, markets and branches." - Wikipedia

Digitalisation

"...as the way many domains of social life are restructured around digital communication and media infrastructures..."

How would you define digitalisation?

Sources: J. Scott Brennen, Daniel Kreiss. 2016. Digitalization. In The International Encyclopedia of Communication Theory and Philosophy, K.B. Jensen, September 2020 E.W. Rothenbuhler, J.D. Pooley, and R.T. Craig (Eds.). 1–11. https://doi.org/10.1002/9781118766804. wbiect111 5

Digital solutions in various sectors

Ê

Estimated energy savings due to digitalisation in the buildings sector 10%

Digital Solutions Buildings

Today Going forward **Environmental impact** Digitalisation Estimated energy savings • **33%** of global energy Smart thermostat consumption Smart lighting • 55% of global 10% electricity demand

Energy usage in the transportation sector could halve or more than double due to digitalisation

Digital Solutions Transportation

Today	Going forward	
Environmental impact	Digitalisation	Estimated energy savings
 28% of global energy consumption 23% of global CO₂ emission 	<text></text>	Best-case scenario: energy savings up to 50% Worst-case scenario: energy consumption increases with 100%

Energy savings in industry sector due to digitalisation primarily from 3D printing and robots

Digital Solutions Industry

Energy savings in energy sector due to digitalisation primarily from integrating renewables

Digital Solutions Industry

Today Going forward Digitalisation Energy Landscape Estimated energy savings Integrating **renewables** Petroleum products 36% • Natural gas 21% • Solid fossil fuels 15% 30 ٠ Renewable energy 15% • Mt CO₂ emission (EU) Nuclear energy 13% •

Sources: International Energy Agency. Digitalisation & Energy, report, 2017

European Commission. Shedding light on energy in the EU, 2018, https://ec.europa.eu/eurostat/cache/infographs/energy/bloc-2a.html

10

40 Gt CO₂/ year

Formula show how to quantify energy savings in theory

The Formula

The formula is not easy to apply in practice

Sources: A. Stephens, V. Thieme. Framework for Assessing Avoided Emissions, Accelerating innovation and disruptive low- and zero-carbon solutions. Partember 2020 2: Draft methodology for calculating avoided emissions, report, 2020

Case study shows that there are challenges in quantifying avoided emissions

It is possible to do estimations! However, there are a lot of **uncertainties**

14

First challenge in quantifying energy savings

Finding the Baseline

Sources (including graph): V. Coroama, P. Bergmark M. Höjer, J. Malmodin. A Methodology for Assessing the Environmental Effects Induced by ICT September 2020 Services: Part I: Single Service, Proceedings of ICT for Sustainability (ICT4S) 2020, pp. 36-45, 2020

Second challenge in quantifying energy savings

Data Quality

Sources: A. Stephens, V. Thieme. Framework for Assessing Avoided Emissions, Accelerating innovation and disruptive low- and zero-carbon solutions. Pseptember 2020 2: Draft methodology for calculating avoided emissions, report, 2020

Third challenge in quantifying energy savings

Forecasting Digital Solutions

Sources: A. Stephens, V. Thieme. Framework for Assessing Avoided Emissions, Accelerating innovation and disruptive low- and zero-carbon solutions. Partember 2020 2: Draft methodology for calculating avoided emissions, report, 2020

Fourth challenge in quantifying energy savings

Generalising Individual Cases

- Different systems, different products and services
- Adoption
- Effect per use
- Conservative assumptions
 and approximations

Fifth challenge in quantifying energy savings

Anticipating Rebound Effect

What is the rebound effect?

When CO₂ emissions increases due to use of the digital enabler

Challenges

- Predicting the markets response
- Large impact on the result

In many reports, the rebound effect is not included in the estimations of energy savings or avoided emissions

There are 3 key takeaways

Conclusion

Digitalisation could help save energy, or not

- Several challenges
- The formula

Many reports written within the industry, ignoring possible negative effects

Sources: V. Coroama, P. Bergmark M. Höjer, J. Malmodin. A Methodology for Assessing the Environmental Effects Induced by ICT Services: Part I: September 2020 Single Service, Proceedings of ICT for Sustainability (ICT4S) 2020, pp. 36-45, 2020

Thank you

Pictures: https://merculexenergy.com/celebrating-world-environment-day/ | https://eitrawmaterials.eu/expert-forum-digitalisation-in-the-raw-materials-sector/ | https://asiatimes.com/2020/08/us-china-both-lag-badly-in-industrial-robot-race/ | https://aqualith-park.nl/smart-lighting-showdown-bluetooth-smart-vs-wi-fi-vs-zigbee/ | https://www.azocleantech.com/article.aspx?ArticleID=1094 | https://www.bizjournals.com/sanfrancisco/news/2017/04/19/self-driving-car-baidu-china.html | https://www.photowall.com/us/world-map-detailed-without-roads-wallpaper |