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ABSTRACT
Body sensor networks are emerging as a promising platform
for remote human monitoring. With the aim of extracting
bio-kinematic parameters from distributed body-worn sen-
sors, these systems require collaboration of sensor nodes to
obtain relevant information from an overwhelmingly large
volume of data. Clearly, efficient data reduction techniques
and distributed signal processing algorithms are needed. In
this paper, we present a data processing technique that con-
structs motion transcripts from inertial sensors and iden-
tifies human movements by taking collaboration between
the nodes into consideration. Transcripts of basic motions,
called primitives, are built to reduce the complexity of the
sensor data. This model leads to a distributed algorithm
for segmentation and action recognition. We demonstrate
the effectiveness of our framework using data collected from
five normal subjects performing ten transitional movements.
The results clearly illustrate the effectiveness of our frame-
work. In particular, we obtain a classification accuracy of
84.13% with only one sensor node involved in the classifica-
tion process.

Categories and Subject Descriptors
C.3 [Computer Systems Organization]: Special Pur-
pose and Application-Based Systems—Real-time and em-
bedded systems; J.3 [Computer Applications]: Life and
Medical Science—Health; H.1.2 [Information Systems]:
Models and Principles—User/Machine Systems Human in-
formation processing; Human factors.

General Terms
Design, Algorithms, Experimentation.

Keywords
Body Sensor Networks, Collaborative Signal Processing, Dis-
tributed Classification, Motion Transcripts.

1. INTRODUCTION
Advances in wireless communication, sensor design and

microelectronics have enabled the development of tiny sen-
sor platforms that can be integrated with the physical envi-
ronment of our daily lives. The new generation of wireless
sensor networks, formally known as body sensor networks
(BSNs), is promising to revolutionize healthcare system by
providing continuous and ambulatory healthcare monitor-
ing. They can be used in rehabilitation, sports medicine,
geriatric care, gait analysis, and many other biomedical ap-
plications.

Many movement monitoring applications require knowl-
edge of what movement the subject is performing. This
knowledge can be divided into three categories based on the
level of abstraction of the conclusion: 1) motion, 2) action,
and 3) activity. The most tangible category is the motions
which represents the position, velocity, and acceleration of
all body parts at a given time. Actions belong to a higher
level category, and refer to the basic motion sequences or
static postures. Actions are generally sequential and rather
consistent; examples include standing, moving from sitting
to standing, walking, and jumping. Actions present the most
interest for recognition systems since they add a temporal
characteristic to the sensor observations. While actions pro-
vide more information than motions they lack realization of
intelligent intent in human behavior. This role if filled with
the highest level of motion abstraction called activity. An
activity is a goal-oriented group of actions. Common ac-
tivities include cooking, talking with friends, teaching, and
brushing teeth.

The additive hierarchical representation of human move-
ments is very similar to the representation of human speech:
raw sound is divided into phonemes, which are further grouped
into words, which are grouped into sentences [1]. Phonology
exclusively focuses on sound, ignoring physical movement
of the tongue and throat and cues from facial expressions.
Similarly, raw sensor data can be used to build sequences
of motions, which can be further grouped into actions and
then activities.

We are primarily concerned with recognition accuracy while
respecting the inherent limitations of our sensing platform.
In BSNs, the sensor placement area is limited to a human
body. These systems are usually arranged in a star topol-
ogy with a base station in the middle [2]. It is commonly
assumed that the base station has a larger power reserve and
significantly more memory. Centralized algorithms employ
the base station as the coordinator to reduce computational
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stress on individual sensor nodes. This can result in nodes
forwarding a significant amount data to the base station for
signal processing. However, communication generally con-
sumes more energy than local computation [3]. From the
energy preservation point it is more beneficial to perform
signal processing on individual nodes. This warrants the
need for creating a distributed model, where nodes classify
test data locally and make the overall decision based on a
subset of local decisions.

In this paper, we make the following contributions: 1)
we introduce a new representation of human movements,
called motion transcripts, which reduces complexity of orig-
inal data by transforming multidimensional signals into a
sequence of symbols. 2) we propose a distributed algorithm
for segmentation and classification of movements using mo-
tion transcripts. Since each movement is represented as
a sequence of symbols, it enables our system to lower the
amount of information stored at individual nodes, and to
minimize the amount of data passed in the network. With
the dynamic selection of the nodes needed for classification
the overall number of active nodes is reduced.

2. RELATED WORK
Reducing the amount of active nodes is a common ap-

proach for power optimization and wearability enhancement
in BSNs. One way to reduce the number of active nodes is
to keep track of the performed movements and pay attention
only to a subset of sensors that can observe transition out of
the current motion [4]. Zappi et al. [5] propose to optimize
the system energy consumption by selecting the required
subset of sensors with the help of the meta-classifier sensor
fusion. As a result sensors are awakened only when their
input is needed to satisfy correctness property. Authors in
[6] formulate coverage problem in the context of movement
monitoring using inertial on-body sensors. Their technique
focuses on the minimum number of nodes that produces full
action coverage set. While it is easy to analyze a given ac-
tion set and come up with an optimal number of sensors and
sensor placement, the task is not trivial for a generic action
set. A distributed classification scheme can be employed to
potentially be able to classify a large number of actions and
keep the number of active nodes low.

The concept of primitives has provided an efficient repre-
sentation of human movements in computer vision domain.
Using motion primitives as building blocks, Guerra-Filho et
al. [7] study decomposing angles of body segments, cal-
culated from cameras, into a well-representative language
called HAL (Human Activity Language). As another ex-
ample, authors in [8] investigate construction of context-
dependent grammar known as DCG (Discrete Clause Gram-
mar) by combining atomic motions. DCGs enable rules to
be formed using simple logic statements. The authors form a
hierarchy of abstraction that begins with feature extraction
and uses unsupervised classification at each step to group
lower-level primitives into higher-level primitives. The idea
of unsupervised learning in a recognition system based on
motion primitives is also discussed in [9], where authors try
to identify action primitives from motion capture data. Fi-
nally, authors in [10] introduce a statistical technique for
synthesizing walking patterns where the motion is expressed
as a sequence of primitives extracted using a Hidden Markov
Model (HMM). To simplify computation further primitives
can be represented as string templates. This idea is explored

Table 1: Commonly used terms
Name/Symbol Definition
Action (Aj) A transitional movement observed by the

system.
Observation (Oij) A specific view of action Aj by node si.
Primitive Basic set of motions defined by grouping

similar signal readings.
Cluster Set of signal readings that have consistent

physical behavior representing a primitive.
Alphabet (

∑
i) A set of symbols assigned to primitives

at each node si.
Transcript (Tij) A sequence of motion primitives assigned

to action Aj by node si.
Choreography (CRj) A concatenation of transcripts of different

nodes assigned to action Aj .
Template (TPLij) A transcript which best represents action

Aj as viewed by node si.
Class (Cij) Set of observations of the same action Aj

made by nodes si.

in [11] where authors use edit distance to distinguish be-
tween motion primitive in 3D movement classification task.
While the reviewed approaches successfully detect human
actions, it is important to note that all of them rely on the
information collected from all of the nodes in the network.

Several authors have developed techniques for automatic
segmentation of motion sensor data. Authors in [12] present
a clustering-based approach to detect and annotate daily ac-
tivities (e.g. sleep) that recur regularly with similar times
and durations during every given time frame (e.g. every
day). Segmentation technique in [13] is based on HMM
and aims to annotate a set of predefined events (e.g. initial
stance when walking) from body-worn sensor nodes. These
techniques focus only on segmentation and do not provide
knowledge about the movement that occurs. Furthermore,
they use a fixed set of sensor nodes for data processing and
communication. Our approach is different in the sense that
it performs simultaneous segmentation and classification of
motion data and dynamically selects a subset of sensor nodes
for data fusion and communication.

We propose a concept of combining primitives extracted
from the sensor data into motion transcripts that maintains
temporal and structural properties of the observed sensor
readings. Based on properties extracted from edit distance
calculation, we define a novel distributed algorithm for seg-
mentation and action recognition. To the best of our knowl-
edge no work has been done on development of a distributed
classification algorithm based on the properties of motion
transcripts.

3. SYSTEM OVERVIEW
In this section we briefly describe the architecture of our

system and signal processing flow. Table 1 defines some
of the terms in the context of this study which are used
throughout this paper.

3.1 Sensing Platform
Our system consists of several XBowR© TelosB sensor nodes

with custom-designed sensor boards. Each sensor board has
a tri-axial accelerometer and a bi-axial gyroscope. Each
node is powered by a Li-Ion battery and samples the sensors
at a certain rate, performs local processing and can transmit
collected data wirelessly to other nodes. In particular, each
mote can send the data to a base station. For our exper-
iments, the base station is a node without a sensor board
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Figure 1: Signal processing for transcript genera-
tion, segmentation and distributed action recogni-
tion
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Figure 2: Training for segmentation and distributed
classification

that forwards the data to a PC via USB. Furthermore, two
Logitech webcams are used to record video of all trials. The
video is used only during training as a gold standard to mark
the start and stop times associated with movements. For the
prototype that is developed in this paper, the sensor read-
ings and video are collected and synchronized in MATLAB
while data from each body-worn sensor is obtained at 50
Hz. The choice of sampling frequency is important because
it should provide sufficient resolution of human movements.
In our system, this number is high enough to maintain this
requirement. Furthermore, it satisfies the Nyquist criterion
[14].

3.2 Signal Processing
A block diagram of our signal processing, transcript gen-

eration and movement classification is shown in Figure 1.
The processing model requires several parameters that are
measured during training as shown in Figure 2. In the fol-
lowing, each processing task is described briefly.
Filtering: The data collected at each node is locally filtered
using a five-point moving average with the cutoff frequency
of 2.4 Hz to reduce the noise. The number of points used to
average the signal is chosen by examining the power spec-
tral density of the signals. The filter is required to remove
unnecessary artifacts (e.g. tremors in patients with Parkin-
son’s disease) while maintains significant data.
Feature extraction: Features are extracted from a small
moving window centered about each point of the signal stream.

The features include mean, standard deviation, root mean
square, first and second derivatives. Intuition behind choos-
ing this set of features is that they are computationally in-
expensive that can be executed on our light-weight sensor
nodes. Furthermore, their effectiveness in capturing struc-
tural patterns of motion data is established through our ex-
perimental results.
Transcript generation: Each point is clustered based on
the features calculated for the window surrounding it, while
each cluster represents a movement primitive. A transcript
is then built by noting where each primitive begins and ends
based on the membership of the data points to a cluster. The
transcript is then transformed into a sequence of characters
over a finite alphabet. Transcript generation functions based
on the clustering parameters obtained from training.
Per-node segmentation and classification: String match-
ing technique is applied on the transcripts to detect parts
of the signal that represent a specific action. Templates
that are generated per movement class during training are
located on the continuous data stream of characters to clas-
sify actions locally.
Distributed action recognition: An in-network process-
ing algorithm is used to make a final decision on the current
movement by combining data from most informative nodes
and converging to a final decision. The node with most reli-
able classification decision starts propagating its local results
to other nodes. On receiving data, other nodes combine the
data with their local statistics and another node may decide
to broadcast the accumulated results. This process contin-
ues until a target action is detected.

4. MOTION TRANSCRIPTS
A physical movement can be divided into a sequence of

several smaller motions. A transcript of this movement
would record order and timing of the basic motions. For
example, a transcript for the foot during walking could con-
sist of 1) lifting the foot, 2) moving the foot forward, 3)
placing the foot on the ground, and 4) bearing weight on
the foot, with certain periods of time associated with each
primitive.

Transcripts consist of adjacent, non-overlapping segments
labeled as a particular motion primitive. One way to gen-
erate movement transcripts is to independently label each
sample as a given motion primitive. We determine the char-
acteristics for each data point in our signal by extracting
features described in Section 3.2 from a moving window cen-
tered about the current point. The motion primitives should
be found without specific knowledge of the movements, but
based on patterns in the signal. Lack of prior knowledge of
the structure of the dataset makes construction of primitives
challenging. A well-studied approach for grouping similar
observations is clustering [15]. We use clustering analysis to
group data points with consistent features to form a primi-
tive.

Our model employs two steps for generating motion tran-
scripts: 1) clustering of each data point in a movement to
find the set of primitives 2) labeling to map each primitive
to a character over an alphabet.

4.1 Primitive Construction
Clustering deals with the problem of finding patterns in

a dataset in an unsupervised manner. Data points (repre-
sented by a feature vector) in a cluster are similar and points
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in different clusters are distinct. Several clustering meth-
ods such as K-means [16], hierarchical [17] and probabilistic
model based clustering [18] have been developed. Gaussian
Mixture Models (GMM) is a model based approach that
creates clusters by representing the probability density func-
tion of the data points as a mixture of multivariate Gaussian
distribution. GMM is a powerful probabilistic model exten-
sively used in speech recognition due to its ability to tolerate
cluster overlap or cluster size and shape variations [19].

We use GMM as a clustering technique to define the prim-
itives from a set of training movements. The kth primitive is
associated with a cluster ωk in the model which has a mean
vector μk. Each cluster generates data from a Gaussian with
mean μk and covariance matrix σ2

kI. Given an observation
Oi (ith feature vector), GMM finds the cluster correspond-
ing to that vector. It computes �ik, the probability of the
cluster k’s responsibility for accommodating observation Oi.
This probability is given by

�ik = P(k|Oi) =
P(Oi|k)P(k)

P(Oi)
(1)

where P(Oi|k) is the Gaussian function for cluster k and is
defined by

P(Oi|k) = g(Oi; μk, σk) (2)

and P(Oi) represents the prior probability that can be cal-
culated by marginalization of joint probabilities as given by

P(Oi) =
∑

k

P(Oi, k) (3)

and P(k) is the mixing parameter for component k in the
model which is equal to the number of observations belong
to that cluster divided by number of all observations. There-
fore, the responsibility probability can be written as

�ik =
g(Oi; μk, σk)P(k)∑

k P(Oi, k)
(4)

and calculated for each observation, using a combination
of Gaussian and mixing parameters. The process can be
repeatedly executed to assign probability to all observations.

We use Expectation Maximization (EM) [20] to find the
parameters of the mixture model. For a GMM with K com-
ponents, parameters of the mixing model include the mean
vector and covariance matrix. As the number of compo-
nents is unknown a priori, we perform multiple runs of the
EM algorithm with varying values of K. The optimal num-
ber of clusters and the problem of choosing the best model
are evaluated based on the Bayesian Information Criterion
[19]. Each data point can be assigned to a primitive by se-
lecting the cluster that maximizes the posterior probability.
We construct a transcript of movement by noting where each
primitive begins and ends based on the membership of data
points to a cluster.

4.2 Labeling
The second step in our transcript generation is to assign

labels to the primitives. Each movement can be described
as a series of primitives. We label each primitive with a
unique symbol. The transcript is then transformed to a se-
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Figure 3: An example of motion transcripts gener-
ated for a one-dimensional synthetic signal.

quence of symbols over a certain alphabet, which is unique
for each sensor node. Figure 3 shows transcript of a synthetic
one-dimensional signal which illustrates correspondence be-
tween the primitives and signal patterns. In this figure, cor-
responding primitives are generated with GMM approach,
labeled and colored. For example, primitive ‘G’ corresponds
to a portion of the signal with a positive slope and ‘W’ repre-
sents a portion with positive value of the second derivative.
Note that each primitive maintains its temporal characteris-
tics. Since duration of both ‘G’ and ‘M’ is short in the orig-
inal signal, the same is true in the transcript. This example
clearly verifies that primitives can capture signal segments
that exhibit consistent patterns.

Definition 1. Given an observation Oij of action Aj made
by sensor node si, a transcript Tij is generated by our tech-
nique and is defined as a finite sequence of symbols from an
alphabet Σi.

Each sensor node builds its transcripts independent of the
patterns observed by other sensor nodes. That is, each node
si (i ∈ {1, . . . , n}) requires a separate alphabet, Σi.

4.3 Template Generation
Our distributed action recognition requires each node to

perform a local segmentation and classification before com-
municating with other nodes. This process is accomplished
by comparing the continuous stream of characters with a set
of predefined templates, which are obtained during training.
Each node si creates a template TPLij for movement Aj ,
which represents all training trials of the movement observed
by si. The template is a transcript which best represents a
movement. For this purpose, we measure similarity between
every pair of transcripts from a class Aj .

To compare two transcripts, a measure of similarity is re-
quired. Euclidean distance is widely used as the similarity
measure when the training set is constructed based on sta-
tistical features. In our system, however, each movement is
represented by a set of transcripts. Therefore, a similarity
metric is required to find the difference between two strings.
The Levenshtein distance [21], also called edit distance, is
a well-known metric for measuring the amount of difference
between two character sequences. The edit distance between
two strings is given by the minimum number of operations
needed to transform one string into the other, where an op-
eration is defined as an insertion, deletion, or substitution
of a single character.

Edit distance is used to compare every pair of transcripts
within a class Aj . The transcript that has the smallest sum
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of distances from all other transcripts is chosen as template:

TPLij = arg min
s

∑
s�=t

δ(T s
ij , T

t
ij) (5)

where T s
ij and T t

ij are associated with any two training trials
of movement Aj by node si, and δ denotes the edit distance
function.

5. ACTION RECOGNITION
Action recognition aims at classifying human movements

as predefined actions. Movements are mainly postural mo-
tions such as ‘Sit to Stand’, ‘Stand to Sit’, ‘Kneel’ and ‘Sit
to Lie’ which can be specified by the start and the end of
the signal. In general, a new observation of human move-
ments can be classified in two ways. In the first method, a
central classifier is designed at the base station where a new
action is recognized according to an existing training model.
The second approach, however, uses in-network processing
to make a final decision on the current movement by com-
bining data from most informative nodes and converging to
a final decision. Deployment of a central classifier is not
efficient in terms of communication power and bandwidth.
Distributed nodes can produce redundant or overlapping in-
formation which can potentially induce extra communica-
tion. To overcome this drawback, a distributed algorithm,
which combines knowledge form different nodes and operates
in a real-time manner, is required. Development of such al-
gorithm would become challenging as different sensor nodes
can contribute to recognition of movements to different lev-
els. Despite its inefficiency, we will explore certain proper-
ties within the central classification strategy which would
enable the development of an effective and fast distributed
algorithm.

5.1 Centralized Architecture
A centralized classifier receives data from all sensor nodes

and makes a decision by combining the data using a fusion
scheme. In our framework, each sensor node generates a 1-
dimensional feature space in the form of transcripts. To en-
able the use of traditional classifiers, e.g. k-NN (k-Nearest-
Neighbor ) [15], a fusion technique is required to represent
each trial of a movement by integrating spatially distributed
transcripts. For this reason, we make a choreography for
each trial, by concatenating corresponding transcripts from
all sensor nodes and producing a new transcript.

Definition 2. The concatenation of n given strings S1,
S2, . . .Sn yields another string S where all symbols of Si

follow by all symbols of Si+1.

S = Concat(S1, S2, . . . , Sn) (6)

Definition 3. Given a set of n transcripts T1j, T2j, . . . ,
Tnj associated with a certain trial of movement Aj and gen-
erated by n sensor nodes, the trial is represented by the
choreography CRj=Concat(T1j, T2j , . . . , Tnj).

Each transcript Tij is associated with a length �(Tij) which
is equal to the total number of symbols that form the tran-
script. It is easy to see that the length function is additive
with respect to the string concatenation.

In a centralized architecture, all sensor nodes transmit
their local transcripts to a base station. For each observa-
tion of action Aj , a choreography CRj is then obtained by
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(a) An example of motion transcript generated by a sensor node. There
are two movements of interest including Mvt1 and Mvt2 associated with
templates TPL1=“DCBA” and TPL2=“EFBGCH”.
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(b) String matching to detect Mvt1 and Mvt2. Edit distance value be-
comes zero due to exact matching of the transcript and corresponding tem-
plates.

Figure 4: Per-node segmentation and classification.

the base station. On observing an unknown action, a classi-
fication algorithm is used by the central node to classify that
action as one of the movements based on which the classifier
is previously developed.

Let CRiq be a choreography generated for an unknown
action Aq. For each class Cij , let CRij be the closest to CRiq

choreography generated during training. A 1-NN classifier
assigns Aq to the class Aĵ such that:

ĵ = arg min
j

δ(CRiq, CRij) (7)

where δ(CRiq, CRij) represents the value of the edit dis-
tance between choreographies CRiq and CRij .

5.2 Distributed Paradigm
In the centralized architecture described earlier, when an

unknown action occurs, all sensor nodes must transmit their
local transcripts to the central node for the purpose of global
classification. In contrast, in a distributed scenario, each
node makes a local decision on the target movement and
may decide to propagate its local results to a next node.
The amount of data transmitted over the network can be
reduced to only a subset of the nodes that contribute to the
classification of the movement. In this section, we develop
a distributed algorithm for action recognition which needs a
smaller number of the nodes to make a decision while main-
tains classification accuracy comparable to the centralized
architecture. We first describe the process of segmentation
and local classification that provides information that needs
to be transmitted during distributed action recognition. We
then explore an additive property of the edit distance which
enables the distributed algorithm.

5.2.1 Segmentation and Local Classification
As the transcript generation transforms signal readings

into a continuous sequence of symbols, a segmentation al-
gorithm is required to detect portions of the transcript that
correspond to a complete action. For that, the transcript
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is compared with the previously generated templates. The
comparison is made within each sensor node and with re-
spect to the edit distance over a sliding window on the
stream symbols. Each template has its own window which
is sized according to the length of that template. Within
each window, the edit distance between the transcript and
each template is calculated. The distance value changes as
the window moves over the stream. The transcript contains
both actions of interest (target) and unknown movements.
The edit distance value decreases as the moving window in-
cludes a larger part of a target action and a smaller part of
actions that are not of interest. Therefore, the edit distance
value decreases as the window moves closer to the action
portion of the signal, and starts increases once the action
is passed. When the distance function reaches a local min-
imum, the corresponding spot is recognized as an action.
However, this information alone is not sufficient to recog-
nize which particular action is performed. If the distance
from the observed template to a template TPLij is below a
certain threshold rij , then the corresponding spot can be an
action Aj . The threshold is obtained during training by cal-
culating mean and standard deviation of edit distances for
each action Aj . A threshold value rij for action Aj is defined
as rij = μij + σij where μij and σij are the mean value and
standard deviation of edit distance between pairs of training
transcripts. Since for multiple actions the distance may stay
below the threshold, a 1-NN classifier is employed to assign
an unknown spot to one of pre-specified actions. Assume an
unknown spot is associated with a transcript Tiq represent-
ing a new action Aq which we need to classify. The node si

measures distance between the new movement Tiq and near-
est template. Assume TPLij denotes the nearest template
to Tiq. The classifier assigns the new movement Aq to class
Ciĵ according to (8).

ĵ = arg min
j

n∑
i=1

δ(Tiq, TPLij) (8)

A simple example of local segmentation and classifica-
tion for a system with two movements of interest (Mvt1
and Mvt2) is shown in Figure 4. Figure 4(a) shows the
stream of symbols generated by a sensor node. The two
actions are represented by templates TPL1=“DCBA” and
TPL2=“EFBGCH” respectively, and start at times 12 and
27. At each point in time, there are two sliding windows
which are sized according to the length of TPL1 and TPL2

(i.e., there are two windows with sizes of 4 and 6). Fig-
ure 4(b) shows how the value of the edit distance function
changes for each window (associated with TPL1 and TPL2).
For this specific example, we assume that an exact matching
(i.e. δ = 0) would correspond to detection and classifica-
tion of each movement. In reality, however, an approximate
matching (δ ≤ rij) is used to specify the spot assiciated with
a movement.

As stated previously, we compare each template with the
motion transcript over a sliding window. We note that all
the templates TPLij produced by different nodes for a par-
ticular action Aj have the same length because they are
manually segmented and sized during training. That is,

�(TPLij) = �(TPLkj) ∀si, sk (9)

This property allows us to align segments across different
nodes prior to running the distributed classification algo-
rithm. Segments of the same action that are spotted by
different nodes have equal lengths. If a segment detected by
a node si is slightly delayed, we correct the time alignment
by moving that segment to match with the segment that
appears earliest in another node sk.

5.2.2 Additive Property
To develop a distributed algorithm based on motion tran-

scripts, we take advantage of additivity of edit distance with
respect to concatenation. This property implies that the
summation of edit distances computed locally is equal to
the edit distance of the overall choreography. We note that
nodes si and sk construct their transcripts using separate
alphabets Σi and Σk. Edit distance increases as a result of
insertion of a character, deletion of a character, or substitu-
tion of an existing character with another. It can be shown
that the edit distance is additive under each one of the above
operations. Furthermore, edit distance calculation proceeds
linearly and increases the sum by only 1 at a time (based on
the operation performed), which means that any combina-
tion of operations described above is also additive.

A direct consequence of the additive property of the edit
distance is that a global decision, on the current action oc-
curring in the system, can be made by calculating edit dis-
tances locally (as described in Section 5.2.1) and adding
them in the network to find the most similar movement.
That is, a target action is identified by adding edit distances
up from all sensor nodes and finding the movement for which
the summation has smallest value, pointing to the nearest
class to the test trial.

The idea behind our distributed algorithm is similar to
the basic principle behind classification. If the classification
works correctly, the value of only one movement’s classifier
will be below the threshold. This means that once the sum-
mation of distance values from a subset of nodes exceeds
the threshold the corresponding classifier is not producing
significant information and no further computation for it is
needed. To capitalize on this property we create the order-
ing where the largest distance values are added first. They
are more likely to make the summation exceed the threshold
and invalidate bad classifiers early.

5.2.3 Algorithm
Motivated by the idea described earlier, in this section, we

derive a distributed algorithm for action recognition. The
algorithm assumes that each node processes data locally,
generates transcripts and measures distance between an un-
known trial and every class of movements. Each node as-
sesses reliability of its own classification. Communication
is initiated by the node that has the most reliable informa-
tion for classification. The computation is executed by a
series of the nodes until the solution converges. Each sensor
node maintains a data structure, including its local compu-
tation as well as statistics received from other nodes. In
particular, each node si maintains a timer variable τi which
represents the time to initiate the communication. It also
keeps track of recognition convergence by a variable Target
Movement Vector (TMV) which initially contains all actions
as possible target movements. As the algorithm proceeds,
each node may decide to discard some movements from the
TMV. Furthermore, each node si maintains a Distance Vec-
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tor (DV ) to evaluate confidence level of classification. This
vector stores the distance between the unknown action and
all classes within that node, and is gradually updated as
a node receives corresponding distances from other nodes.
The algorithm takes several steps as follows.
Step 1 (Initialization): Each sensor node si classifies an
unknown movements Aq as Aĵ and forms its distance vector
DVi. It further sets a timer τi to have an inverse relationship
with the average of distances between Tiq and all classes Cij

, excluding the target class Ciĵ . Once τi expires, the node
starts transmitting its local statistics. These operations are
formulated in (10) through (13).

DVi = {δ(Tiq, TPLi1), ..., δ(Tiq, TPLim)} (10)

ĵ = arg min
j

δ(Tiq, TPLij) (11)

Δi =
1

m − 1

∑
j �=ĵ

δ(Tiq, TPLij) (12)

τi ∝ 1

Δi
(13)

where m denotes the number of actions. Our choice of Δi is
inspired by confidence estimation of classification in machine
learning and pattern recognition. The confidence measure
is usually defined based on the minimum distance for which
the class prediction changes [22, 23]. In a 1-NN classifier it
is equal to the distance to the second closest class. However,
our pruning-based distributed classifier aims to reduce the
number of nodes contributing in classification. Therefore,
the distance measure Δi must be chosen to prune larger
number of actions per node. The intuition is that large
Δi correspond to a set of large distances between Tiq and
existing classes. A large distance between Tiq and a class
TPLij suggests that it is less likely that TPLij is the target
class.
Step 2 (Transmission): When the value of the timer τi

becomes zero, the node si starts broadcasting its local statis-
tics including DVi and TMVi. This node will never need to
transmit again for detecting current action. Therefore, it
can turn its radio off saving power until a new action oc-
curs.
Step 3 (Update): On receiving data, each node sk first
terminates its timer to avoid the scheduled transmission. It
then updates its local distance vector DVk by adding corre-
sponding values from TMVi provided by the sender node si.
The receiver further updates the Target Movement Vector
TMVk by rejecting the movements that are far enough from
the target class. To do so, the node sk discards those move-
ments Aj that have an accumulate distance greater than or
equal to a threshold εj . The receiver also checks conditions
for termination. Specifically, it checks the convergence vec-
tor TMVk which contains possible movements left. If only
one movement is left in the vector, the node declares a con-
vergence and reports that movement as the target action.
It then broadcasts a message to all the remaining nodes to
stop their scheduled transmission. However, if more than
one action is left in TMVk, the node would schedule a trans-
mission by resetting its timer as discussed previously. These

Algorithm 1 Updating Target Movement Vector (TMVk)
by node sk

if δ(Tkq, TPLkj) ≥ εj then
remove action Aj from TMVk

end if
if |TMVk| = 1 then

declare Aĵ as target movement

else
set timer τk as in equation (13)

end if

operations are summarized in Algorithm 1. The algorithm
proceeds through Steps 2 and 3 until it uniquely identifies
an action as target movement.

5.2.4 Choice of Epsilon
Our distribute algorithm considers a complete list of move-

ments when it starts. As it goes after different nodes, the
system tends to disqualify those actions that have a large
distance to the test trial. The pruning decision described
in Algorithm 1 is made according to the value of εj which
is defined for every movement Aj . For our experiments, we
calculate εj as in (14).

εj =

n∑
i=1

[
1

Mj

∑
s

δ(T s
ij , TPLij)

]
(14)

where Mj represents the number of samples in class Cij and
trial ‘s’ refers to any training transcript. The idea behind
choosing such value for εj is motivated by the classification
decision in (8). For each movement, we calculate expected
edit distance between a given trial and the movement tem-
plate. This is done by calculating edit distance between ev-
ery training trial ‘s’ and the template (δ(T s

ij , TPLij)), and
taking an average over all such pairs (

∑
s δ(T s

ij , TPLij)). By
adding values from all the nodes, we compute the maximum
edit distance we expect to get when a test movement is clas-
sified as Aj . During system training, εj is calculated for
every training class. During classification, once the summa-
tion of distance values from a subset of nodes exceeds this
threshold the corresponding movement is disqualified and no
further computation is needed. Although the choice of ep-
silon would determine the performance of the classifier, our
proposed distributed classification technique can be applied
independent of choice of epsilon.

Algorithm 2 Updating rejection criteria for faster conver-
gence

if δ(Tkq, TPLkj) ≥ nv+b
n εj then

remove action Aj from TMVk

end if

5.2.5 Augmenting Classification
The criterion δ(Tkq, TPLkj) ≥ εj in Algorithm 1 for re-

jecting movements from further processing is determined
conservatively. This method may require the algorithm to
go after more sensor nodes than optimally required for a
classification decision. However, the criterion can be modi-
fied for a faster convergence. Depending on the classification
accuracy, designer may decide to use different criteria. Al-
gorithm 2 is one of the approaches which updates the value
of εj dynamically based on the number of nodes already vis-
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Table 2: Experimental movements
No. Movement
1 Stand to sit
2 Sit to lie
3 Bend and grasp
4 Kneel
5 Turning counter clockwise
6 Look back clockwise
7 Move forward (1 step)
8 Move to the side (1 step)
9 Reach up to cabinet
10 Jump
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Figure 5: Experimental subject wearing seven sen-
sor nodes.

ited. In this algorithm, nv represents the number of nodes
already considered for classification, n is the total number
of sensor nodes, and b is a tunable parameter which can be
adjusted by the designer to obtained desired classification
accuracy. (nv + b)/n represents the fraction of εj that is
required for classification termination.

6. SYSTEM PROTOTYPE
In this section, we present procedures for developing our

action recognition framework. Moreover, we demonstrate
the effectiveness of our system using a prototype developed
in our research laboratory.

6.1 Data Collection
We developed our trial product for identifying 10 transi-

tional movements listed in Table 2. The experiments were
carried out on five subjects, three males and two females, all
between the ages of 25 to 55 and in good health condition.
Seven sensor nodes were placed on the subjects as shown in
Figure 5. Subjects were asked to repeatedly perform each
specific action 10 times.

The motes were programmed to sample sensors at 50 Hz.
The sampling frequency was chosen to satisfy the Nyquist
criterion. For estimation of the Nyquist frequency, the power
spectrum of the sampled signals was examined. From the
power spectrum graphs, the highest frequency of the signal
was 8.5 Hz which means that a sampling frequency of 17 Hz

Table 3: Speed of movements
Mvt Range (sec.) Mean (sec.) Std.

1 0.9–3.1 1.98 0.51
2 1.4–3.0 1.92 0.34
3 2.0–3.8 2.71 0.50
4 2.0–2.8 2.50 0.18
5 1.8–2.9 2.37 0.23
6 2.8–4.2 3.41 0.34
7 2.1–2.9 2.46 0.22
8 1.8–3.3 2.49 0.47
9 1.6–3.0 2.16 0.36
10 2.3–3.5 2.71 0.26

would suffice to meet the Nyquist frequency. This confirms
previous findings in [24, 25] that use a sampling rate between
40 Hz and 50 Hz for acceleration readings.

Although we carried out our experiments in a controlled
environment where subjects were asked to repeatedly per-
form each action, we did not constraint our subjects to per-
form actions with a specific speed. Table 3 shows range,
average and standard deviation of the speed for each move-
ment, taken over all trials. The speed was calculated after
performing manual segmentation of the signals with the help
of video and counting the number of samples within each
trial. As the table shows, movements have a relatively wide
range of speed. For example, movement “Stand to sit” has a
speed of 0.9 seconds for the fastest trial while in the slowest
trail it has a speed of 3.1 seconds.

6.2 Data Processing
For each movement, 50% of the trials were used to gen-

erate the training model, and the rest were used to verify
the action recognition technique. For each trial, the raw
sensor readings were passed through a five-point moving av-
erage filter to reduce high frequency noise. The five-point
moving average filter is a low pass filter with a cutoff fre-
quency of 2.4 Hz. The cutoff frequency was obtained by con-
ducting a discrete Fourier transform analysis. The choice of
the window size for the moving average filter relies on two
objectives 1) the cutoff frequency needs to be low enough
to effectively bypass unnecessary motions such as tremors
that occur at higher frequencies than usually movements.
2) the cutoff frequency must be high enough to maintain
significant data. With these objectives, different filters with
varying window sizes ranging from 3 to 13 were examined.
Filters that had cutoff frequency within the range of unde-
sirable motions were pruned out (e.g. tremors in patients
with Parkinson’s disease occur at frequencies 4-5.3 Hz [26]).
Among the remaining filters, the one that generates highest
quality clusters (given by Silhouette measure [27]) during
transcript generation was chosen.

The filtered data went through subsequent signal process-
ing tasks including feature extraction, transcript generation
and segmentation as described in Section 3.2. Motion tran-
scripts were generated by individual nodes using separate
alphabets. Figure 6 illustrates transcript of ‘Reach up to
cabinet’ generated by the node placed on the right-wrist. For
visualization, only accelerometer readings are shown in this
figure. Acceleration is measured with respect to the gravita-
tional acceleration, g, as shown on X-axis. Each movement
is divided into several segments, each representing a primi-
tive. A string αL denotes L instances of primitive α mapped
to the same cluster. For example, A22 in Figure 6 accounts
for the same mapping of the first 22 points.

251



Table 4: Overall classification accuracy and average number of nodes for different setups
Centralized Fixed Threshold Augmented Augmented Augmented

(b=2) (b=1) (b=0)
Accuracy 91.33% 91.33% 91.20% 86.00% 84.13%

Average # of nodes 7.0 5.5 5.3 2.5 1.0

0.2 0.4 0.6 0.8 1 1.2 1.4
−1

0
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m
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Transcript

A22 B11 A12 B19 A9 B5

Figure 6: Transcript for a trial of ‘Reach up to cab-
inet’ generated by the right-wrist node
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Figure 7: Classification accuracy per movement for
different experimental categories.

6.3 Classification Accuracy
As mentioned earlier, we used 50% of the trials to validate

the effectiveness of our distributed action recognition tech-
nique. For each test trial, our local processing proceeded to
generate transcripts at each node. With the transcripts, we
computed the distance between the test trial and each move-
ment. Based on the resulting distance vector, a sensor node
might decide to transmit its local statistics as describes in
Section 5.2. The algorithm could eventually output an ac-
tion as the target movement. We compared this output with
the actual label obtained during the data collection to verify
classification decision.

The analysis was performed for four categories accord-
ing to the movement rejection criterion: 1) Fixed criterion,
when the value of the rejection threshold was fixed based on
training data (see Algorithm 1). The classification accuracy

Table 5: Average number of active nodes
Augmented Fixed Threshold

Mvt b = 0 b = 1 b = 2
1 1.00 2.88 6.36 6.68
2 1.00 2.68 5.00 5.58
3 1.28 1.82 3.70 4.98
3 1.00 2.24 5.44 5.02
4 1.00 2.32 3.56 5.62
5 1.00 4.06 6.88 5.82
6 1.00 2.18 4.86 5.18
7 1.00 2.66 4.82 6.32
8 1.28 2.62 6.56 3.90
9 1.00 3.36 5.80 5.80

Overall: 1.05 2.68 5.29 5.51

was 91.33% and the average number of nodes required to
converge was 5.5. In this case the same accuracy as the cen-
tralized algorithm was obtained. 2) Augmented approach
with b = 0 (see Algorithm 2), where threshold was updated
in real-time according to the number of nodes already vis-
ited. This reached an accuracy of 84.13% and 1 node in
average. 3) Augmented with b = 1; with this setup, we
obtained 86% accuracy and 2.6 nodes in average. 4) Aug-
mented with b = 2; the classification accuracy for this case
was 91.2% in average and the average number of nodes was
5.3. These results are summarized in Table 4. Figure 7
shows classification accuracy for each class of movements,
where movement numbers are defined in the Table 2. The
results verify that adjusting the value of rejection threshold
based on augmented approach provides the best results in
terms of the average number of active nodes for classifica-
tion.

For each test trial, our distributed algorithm accumulated
results provided by several senor nodes until it converged
according to the distance threshold ε. The value of ε was ob-
tained according to the training model as discussed earlier.
We calculated the number of nodes required for each trial
to be classified as one of the 10 movements. This number
was 1 on average for the case of augmented threshold adjust-
ment. Furthermore, we computed the number of nodes for
each group of trials associated with an action. In Table 5,
we show the average number of nodes for classification of
each movement. The values are categorized based on the
rejection criterion.

Figure 8 shows the value of ε for each action based on
equation (14). We recall that for each particular movement,
this value represents how well that movement is separated
from the rest of classes on training data. As an example,
movement 9 (reach up to cabinet) has the largest value of ε.
This observation can be interpreted as follows. Movement
9 can be uniquely identified by the node placed on the fore-
arm (e.g. node 2) as this is the only node that experiences
distinguishable patterns when person performs the action.
During other actions either several body segments are ex-
pected to be involved or different motions are introduced by
the forearm. As a consequence, sensor data obtained for this
movement can provide different structural and relational in-
formation from those obtained for the other actions.
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Figure 8: Value of epsilon calculated for each move-
ment based on training data

Table 6: Communication cost
Centralized Distributed

Mvt Raw Transcript Distance Vector
(Kbps) (bps) (bps)

1 20.5 245 60–415
2 20.5 252 62–350
3 20.5 182 44–220
4 20.5 196 48–240
5 20.5 210 50–285
6 20.5 147 35–205
7 20.5 196 49–252
8 20.5 196 48–305
9 20.5 231 55–218
10 20.5 182 44–257

Overall 20.5 204 49–275

6.4 Communication Cost
Table 6 displays the communication cost of different ap-

proaches we discussed in this paper. The second column
shows the required bandwidth when raw sensor readings are
sent directly to the base station for processing. It is a func-
tion of sampling frequency, number of sensors, and number
of nodes. We assumed that each sensor reading is stored
as a 12 bits value. The third column depicts the central-
ized approach that employs motion transcripts. Since each
transcript is made of continuous chunks of the same label,
we transmit only symbols and their corresponding lengths,
which collectively require no more than 12 bits. For the
last column, we report a range of values, since the num-
ber of communications in the distributed approach depends
on the number of nodes that are involved in classification.
When the most conservative configuration is used, the dis-
tributed approach has a 35% communication requirement
increase compared to the centralized approach with motion
transcripts. However, with the least conservative approach
a 75% gain is reported.

6.5 Robustness
In this section, we demonstrate the robustness of this

system to changes in target population and movement set.
First, the cross-subject classification accuracy is calculated
where the data from a test subject is not used for training.
This allows us to estimate the amount of misclassification
for a new subject without previous training data from that
subject. Second, the system is used to identify unknown
movements that have not been used to training.

Since five subjects participated in data collection, five dif-
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Figure 9: Classification accuracy per subject with-
out prior training data from test subject.

Table 7: Confusion matrix for detecting unknown
movements

% Classified as
Test Mvt 1 2 3 4 5 6 unknown

7 0 0 0 26 0 0 74
8 0 0 0 14 0 0 86
9 0 0 0 6 14 0 80
10 14 0 0 6 0 0 80

overall 3.5 0 0 13 3.5 0 80

ferent tests were conducted, each measuring classification ac-
curacy with one subject being used for validation and others
for building the training model. Figure 9 shows per subject
accuracy of the classification. The five subjects are labeled
as S1, S2, S3, S4 and S5. The figure shows the classification
rate for each one of the ten movements. On average, S2

gives the highest accuracy (88%) while the lowest accuracy
(75%) is due to using S5 as the test subject. Subjects S1,
S3 and S4 obtain 80%, 83% and 83% classification accuracy
respectively. As mentioned before, the fifth subject (S5) has
the lowest accuracy among all the subjects. Major source
of misclassifications for this subject seems to be movement
5 (Turning) as shown in Figure 9. This can be explained
by the fact that S5 was the oldest subject with an age of
55, and therefore, her movements have been less similar to
other subjects whose age ranged between 25 and 35.

When an unknown movement occurs for which no training
data exists, the system needs to report it as ‘unknown’. To
show the robustness of the system to new movements, the
first six movements were used to train the system and the
rest of the movements were used for testing. Table 7 shows
how test trials are mapped to different training classes using
the distributed algorithm. As mentioned earlier, when all
entries are removed from the Target Movement Vector, the
system declares the current movement as ‘unknown’.

6.6 Algorithm Complexity
Major computational intensive blocks in our system in-

clude transcript generation and local classification. In order
to estimate complexity of our transcript generation for real-
time execution on the motes, we consider basic operations
that are required to transform raw sensor readings into tran-
scripts. In particular, we estimate the number of ‘Addition’,
‘Multiplication’, ‘Shift’, and ‘Load/Store’ operations that
are needed for ‘filtering’, ‘feature extraction’, and ‘cluster
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Table 8: Number of basic instructions and total
number of cycles to transform a five-dimensional
vector of sampled data into a symbol.
Processing Block #Add #Mul #Shift #LD/ST
Filtering 20 5 0 5
Feature Extraction 60 40 10 0
Cluster Assignment 260 250 10 1
Total 340 295 20 6
#Cycles 340 885 20 6

assignment’. We note that once GMM clustering is devel-
oped during training, it is used to generate transcripts for
each action. Transcript generation for a test trial consists of
finding proper label for each data point (cluster assignment)
based on maximum posterior probability criterion described
in Section 4.1. Each summation, shift, and read/write can
be executed in 1 cycle on MSP430 [28]; however, a multipli-
cation requires 3 cycles in presence of a hardware multiplier.
The number of cycles required to transform one sample of
all existing sensors (x,y,z accelerometer and x,y gyroscope
form a five-dimensional vector) into a character is listed in
Table 8. Given a sampling frequency of 50 Hz, the total
number of cycles for these operations is 62, 550 per seconds.

The local segmentation and classification is done by calcu-
lating inter-transcript edit distances over a sliding window
(see Section 5.2.1). The edit distance function is usually
implemented using dynamic programming and is quadratic
in the length of transcript. As a result, complexity of local
classification is O(l2) where l is the size of the sliding win-
dow. This approximately requires 25, 000 comparisons, load
and store operations, which results in 125, 000 cycles per
seconds. Adding the total number of cycles for transcript
generation to this value, the MSP430 needs 187, 550 cycles
of computation. Given an 8 MHz clock frequency of the
microcontroller on our TelosB motes, this results in 2.24%
CPU utilization.

7. DISCUSSION AND FUTURE WORK
The focus of our work is the distributed action recognition

algorithm which dynamically selects prominent sensor nodes
for movement classification. To the best of our knowledge,
this is the first study on dynamic node selection by means of
inertial sensors. However, our work can be compared with
several previous studies on classifying daily activities based
on centralized architectures. In particular, authors in [5] ob-
tain 84% accuracy using five body-mounted accelerometers.
A multi-modal system, composed of seven different sensors
presented in [29], provides 90% accuracy in detecting twelve
movements. The node selection approach in [30], that ad-
dress the problem of node selection relies on manual selection
of the best combination of nodes based on experimentation.

Our classification scheme uses motion transcripts along
with a distributed algorithm to reduce the amount of data
that needs to be stored and transmitted across the network.
Major factors that affect resource consumption in terms of
memory and communication include the number of actions
and the sampling frequency. Each sensor node stores a Tar-
get Movement Vector and a Distance Vector, both of size
m (number of actions). The same vectors are transmitted
during classification (Section 5.2). Therefore, the amount of
stored as well as communicated data increase with the num-
ber of actions. The length of each template is proportional
to the sampling rate. By increasing sampling frequency, the

template size grows accordingly, increasing the amount of
data that is stored in each node.

Performance of our classification algorithm is independent
of the sequence of movements that occur. For data collec-
tion, we asked each subject to perform each movement 10
times; however, our system can achieve the same accuracy
when movements of different types occur in a sequence.

Currently, our sensing platform is used for data collec-
tion, and the signal processing modules for distributed ac-
tion recognition are developed offline in MATLAB to facil-
itate design process. However, our preliminary results on
algorithm development for real-time execution demonstrate
the applicability of the processing tasks for implementation
and execution on the mote [31].

In this paper, we did not perform an analytical study on
the effectiveness of motion transcripts in detecting move-
ments with varying speed. However, as shown in Table 3,
our experiments were conducted without limitations on the
speed of movements. Yet, our system achieves reasonably
high classification accuracy (Table 4).

Our immediate plan for future is to build other classi-
fiers than k-NN that use motion transcripts and operate on
other similarity measures than edit distance. In particular,
we plan on investigating the effectiveness of feature extrac-
tion from transcripts based on properties of N-grams [32]
and constructing a distributed classifier that operates on
these features in euclidean space. Our main goals of using
N-grams are 1) to reduce computing complexity of edit dis-
tance calculation; 2) to detect variability in movements (e.g.
variation in speed of movements).

Our work in constructing movement transcripts is ongo-
ing. We would like to explore the effectiveness of using tran-
scripts to extract numeric parameters from actions. Exam-
ples of this include grading swings in sports and determining
pathological qualities of gait. Furthermore, we are planning
to determine the performance bounds on our distributed al-
gorithms.

8. CONCLUSION
We presented a dynamic distributed model of movement

classification in body sensor networks. The system relies
on motion transcripts which are built using mobile wearable
inertial sensors. Using transcripts of movements, we pro-
posed a distributed approach, where individual nodes trans-
mit their local results using a timer based on the likelihood
of local results being eliminated by the pruning. When all
but one action is eliminated, the algorithm stops. Our re-
sults demonstrate the effectiveness of this approach, both
for reliable classification and communication reduction.
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