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Important Note: Download of the Book

 Apparently, Microsoft Research updated their website so 
the link to Phil Bernstein’s Book “Concurrency Control and 
Recovery in Distributed Databases” is no longer valid. 

 However, the FTP link (still) works.

 Alternatively, you can find the book on the VS_Wiki used 
earlier in the lecture. 
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Problems with 2PC

 In 2PC any process can block during its uncertainty period.

 However, if all processes are uncertain they all remain 
blocked.
 Coordinator failed after deciding (coordinator is no longer uncertain)

 Issue is addressed in 3PC
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Non-blocking Rule

 NB: If any operational process is uncertain then no process 
can have decided to commit. 

 Solution to previous problem: 
 If all operational processes and find out that they are 
uncertain, they can safely abort, knowing that none of the 
failed processes could have decided commit. 
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Non-Blocking Rule in 3PC

 Idea: Use additional round of messages (PRE-COMMIT, ACK) to get 
everybody out of the uncertainty window. 

 3PC Coordinator sends PRE-COMMIT before COMMIT

 Semantics of PRE-COMMIT: Decision is going to be commit if there 
are no failures.

 A node receiving a PRE-COMMIT replies with an ACK. 

 What’s the purpose of the message? Coordinator has to expect an 
ACK from each participant. 

 To signal an event! Signals that participant is participating in second 
phase
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Three-Phase Commitment Protocol (3PC)
Roles
 Coordinator (C): initiates 3PC
 Participants (P)
Messages
 VOTE-REQ: (C)(P)
 YES, NO: (P)(C)
 PRE-COMMIT (C)(P)
 ACK (C)(P)
 COMMIT, ABORT (C)(P)
Timeouts on
 (P) VOTE-REQ abort
 (C) YES, NO abort
 (P) PRE-COMMIT term. prot. 

(C) ACK ignore failed Ps
 (P) COMMIT term. protocol

1. Coordinator sends VOTE-REQ
to all participants.

2. When receiving VOTE-REQ
participant votes and sends 
YES/NO vote to coordinator.

3. Coordinator collects votes and 
decides commit/abort.
 All vote yes  PRE-COMMIT
 Otherwise  ABORT

4. Participants receive
1. PRE-COMMIT reply ACK
2. ABORT abort

5. Coordinator receives ACKs
then sends COMMIT to those it 
received an ACK from.
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Coordinator

start wait for
votes

wait for 
ACKs

aborted

send
VOTE-REQ

All vote yes 
send PRE-COMMIT

Some vote no 
send ABORT

Timeout  decide abort and
send ABORT

committed

all ACKs received  send 
COMMIT to everybody

Timeout on all ACKs
send COMMIT to ACK nodes
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Participant

wait for
VOTE-REQ

committable

aborted

vote no 
send NO and abort

uncertain

PRE-COMMIT received 
 send ACK

ABORT
received 
 abort

Timeout  decide abort

Participant is uncertain.
It cannot unilaterally decide.
 start Termination Protocol
(same as in 2PC)

vote yes 
send YES

committed

COMMIT 
received  
 commit

Even tough decision is commit.
Participant cannot commit yet.
 Violation of NB rule (others 
may still be uncertain) 
 start Termination Protocol

Timeout

Timeout
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Termination Protocol

1. Elect new coordinator
2. Coordinator sends STATE-REQ to all processes in the election.
3. All operating processes report their state
4. Coordinator applies Termination Rules based on state reports:

TR1: If some process is aborted send ABORT
TR2: If some process is committed send COMMIT
TR3: If some process is uncertain decide abort and send ABORT.
TR4: If some processes is committable but none is committed

resume 3PC as new coordinator by (re-)sending PRE-COMMIT. 
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Coexistence of States

TR2Committed
TR2TR4Committable
TR3TR3Uncertain
TR3TR1Aborted

CommittedCommittableUncertainAborted

 For each feasible combination there is exactly one termination rule
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Failures in 3PC

 Fact: Logging PRE-COMMIT
and ACKs does not help in 
recovery.
  Logging identical to 2PC.

 Recovery from total site failures
 wait for last process that failed 

(unless independent recovery 
possible)  termination protocol 
must include last failing process. 

 Communication failures
 Partitioning can occur
 Partition may decide differently 

inconsistency

 Protocol does NOT tolerate 
communication failures. 

 Solution: Use Quorums, i.e. 
decide only when majority of 
processes are participating. 
introduces blocking again, of no 
quorum can be obtained.
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Assignment 7.14

(10)Committed
(9)(8)Committable
(7)(6)(5)Uncertain
(4)(3)(2)(1)Aborted

CommittedCommittableUncertainAborted

Prove correctness of co-existence table.

(symmetry  only 10 cases)
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Coexistence Table: simple cases

(1) Aborted—Aborted: no failures, a 
NO vote  abort. 

(2) Aborted—Uncertain: p1 votes NO
and unilaterally aborts, p2 votes yes 
and is uncertain. 

(5) Uncertain—Uncertain: p1 and p2
vote YES, however, do not yet know 
the decision made by the 
coordinator.

(6) Uncertain—Committable: after 
situation (5) the coordinator sends 
PRE-COMMIT. p1 received it before 
p2  p1 committable while p2 still 
uncertain.

(7) Uncertain—Committed: prevented 
by NB rule. When committed there 
are no operational uncertain 
processes.

(8) Committable—Committable: step 
(6) after p2 got PRE-COMMIT

(9) Committable—Committed: p2 has 
received COMMIT p1 not yet. 

(10) Committed—Committed: step (6) 
after p1 also received COMMIT. 
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Coexistence Table: remaining cases

(3) Aborted—Committable
(no communication failures)
Abort possible if
 In termination protocol when 

Committable  everybody voted yes
 Hence, processes are either 

uncertain or committable.
 Abort then only in termination 

protocol.
 Consider first round that would 

decide abort
 Abort if some are uncertain 

processes are operational 
impossible (no communication 
failures)

(4) Aborted—Committed
Commit is only reached if committable 

before. 
However, (3) says impossible
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Assignment 7.17

 Describe scenario with site-failures only where a 
committable process still would lead to an abort.

P0

P1 P2

VOTE-REQ VOTE-REQ

YES YES

uncertain uncertain

PRE-COMMIT

committable uncertain

termination protocol

STATE-REQ

“I am the only one alive and 
uncertain so I abort”
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Assignment 7.17

1. P0 sends VOTE-REQ to P1 and P2

2. P1 and P2 both reply with YES
3. P0 sends PRE-COMMIT to P1 but fails before sending it to 

P2. Thus, P1 is committable whereas P2 is still uncertain.
4. P1 fails.
5. P2 times out for the PRE-COMMIT and starts termination 

protocol.
6. P2 sends out STATE-REQ.
7. P2 times out for replies and since it is the only one alive, 

determines abort since it is uncertain.
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Assignment 3 (a)

 Read One-Write All (ROWA) Systems
 Advantage cheap reads: one local read 
 Disadvantage expensive writes: N writes

 ROWA suitable for read-dominated loads

 Apparent trade-off: read costs  write costs

 Synchronous Update Everywhere ROWA: cheap reads expensive writes
 Asynchronous Update Primary Copy: cheap writes expensive reads 

(local read may be out-of-date)

 Is there something in-between, i.e., not write-all and read “a few”? 
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Quorum Systems

 Improve performance with availability in replication. 
 Balance costs between read and write operations.
 Reduce number of copies involved in updates

 Beispiel aus der Politik: “Für Verhandlungs- und Beschlussfähigkeit der
vereinigten Bundesversammlung ist die Anwesenheit von mehr als der
Hälfte (>50%) der Räte erforderlich. “ Dann “absolutes Mehr”.

Types
 Voting Quorums 
 Majority Quorum (Quorum Consensus, “Gewichtetes Votieren”)
 Hierarchical Quorum Consensus 

 Grid Quorums
 Tree Quorums
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Quorums

Formal Definition:
 A quorum system S = {S1, S2, …, SN} is a collection of 

quorum sets Si  U of a finite universe. 
  i,j  {1, …, N} : Si  Sj  .

 For replication we consider two quorum sets: read quorum
RQ and write quorum WQ. 

 Rules
 Any read quorum must overlap with any write quorum 
 Any two write quorum must overlap
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Majority Quorum

 Use vote to define quorum
 Each site has a non-negative voting weight. 
 Majority = number of votes exceed half of the total votes

 For Assignment 3
 For simplicity, we assume each site has vote weight 1.
 N is the number of sites
 Let |S| denote the voting weight of a quorum set S. 

 Rules for read quorum (RQ)  and write quorum (WQ)
 |RQ| + |WQ| > N  read and write quorums overlap
 2 |WR| > N  two write quorums overlap
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Quorum Sizes

 Rules for read quorum (RQ)  and write quorum (WQ)
 |RQ| + |WQ| > N  read and write quorums overlap
 2 |WR| > N  two write quorums overlap

 The quorum sizes |RQ| and |WQ| determines the cost for 
read and write operations.  minimize!

 Minimum quorum sizes for the inequalities are:

 Write quorum requires majority
 Read quorum requires at least half of the system sites

1
2
NWQ  min 



 




2
NRQ  min
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Example
 Consider 4 sites
 min |WQ|=3 sites (majority)
 min |RQ|=2 sites (half)

P1 P2

P3 P4

write quorums overlap

P1 P2

P3 P4

read quorums 
do not overlap

P1 P2

P3 P4

read and write 
quorums overlap
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Comparison with ROWA

 For ROWA we can think of:
 |RQ| = 1 and |WQ|=N. 

 Any read overlaps with any write
 Any two writes overlap
 Reads do not overlap

 For Quorums: 1
2
NWQ 



 




2
NRQ
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Assignment 3 (b)

 Load consists of R reads and W writes
 Normalized: R+W=1

 Cost ROWA = R + N W

 Cost Quorum = R  |RQ| + W  |WQ| 

 For Minimum-sized quorums

















 1

2
NW

2
NRCost
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ROWA
better

Quorum
System
better

ROWA – Quorum System

Write
Load

W=1
R=0

W=1/2
R=1/2

cost
N

1

ROWA

N/2 + 1

N/2

Quorum 
System

W=0
R=1
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Assignment 3 (c)

 Why has asynchronous replication lower cost than 
synchronous replication?

 Cost for synchronous ROWA is
Cost ROWA = R + N W

 In terms of read/write operations asynchronous (primary 
copy) has cost 1
 one direct write (master)
 one local read (possibly outdated copy)
 load independent
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Updates

 However, this is not the full cost.
 Cost for propagating update sets (and reconciliation) also 

need to be considered.

 Assume, updates are load-independent with update 
frequency (rate r) 

 Cost = 1 + r  (N-1)
 Thus, asynchronous, update primary copy is cheaper for 

1N
1WNRr

WNR1)(Nr1







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