
Distributed Systems in practice
Recitation Class 2 – 3PC/Quorum Systems
René Müller, Systems Group, ETH Zurich
muellren@inf.ethz.ch, IFW B49.1
HS 2008

Freitag, 12. Dezember 2008 2René Müller Systems Group, Department of Computer Science, ETH Zurich

Important Note: Download of the Book

 Apparently, Microsoft Research updated their website so
the link to Phil Bernstein’s Book “Concurrency Control and
Recovery in Distributed Databases” is no longer valid.

 However, the FTP link (still) works.

 Alternatively, you can find the book on the VS_Wiki used
earlier in the lecture.

Freitag, 12. Dezember 2008 3René Müller Systems Group, Department of Computer Science, ETH Zurich

Problems with 2PC

 In 2PC any process can block during its uncertainty period.

 However, if all processes are uncertain they all remain
blocked.
 Coordinator failed after deciding (coordinator is no longer uncertain)

 Issue is addressed in 3PC

Freitag, 12. Dezember 2008 4René Müller Systems Group, Department of Computer Science, ETH Zurich

Non-blocking Rule

 NB: If any operational process is uncertain then no process
can have decided to commit.

 Solution to previous problem:
 If all operational processes and find out that they are
uncertain, they can safely abort, knowing that none of the
failed processes could have decided commit.

Freitag, 12. Dezember 2008 5René Müller Systems Group, Department of Computer Science, ETH Zurich

Non-Blocking Rule in 3PC

 Idea: Use additional round of messages (PRE-COMMIT, ACK) to get
everybody out of the uncertainty window.

 3PC Coordinator sends PRE-COMMIT before COMMIT

 Semantics of PRE-COMMIT: Decision is going to be commit if there
are no failures.

 A node receiving a PRE-COMMIT replies with an ACK.

 What’s the purpose of the message? Coordinator has to expect an
ACK from each participant.

 To signal an event! Signals that participant is participating in second
phase

Freitag, 12. Dezember 2008 6René Müller Systems Group, Department of Computer Science, ETH Zurich

Three-Phase Commitment Protocol (3PC)
Roles
 Coordinator (C): initiates 3PC
 Participants (P)
Messages
 VOTE-REQ: (C)(P)
 YES, NO: (P)(C)
 PRE-COMMIT (C)(P)
 ACK (C)(P)
 COMMIT, ABORT (C)(P)
Timeouts on
 (P) VOTE-REQ abort
 (C) YES, NO abort
 (P) PRE-COMMIT term. prot.

(C) ACK ignore failed Ps
 (P) COMMIT term. protocol

1. Coordinator sends VOTE-REQ
to all participants.

2. When receiving VOTE-REQ
participant votes and sends
YES/NO vote to coordinator.

3. Coordinator collects votes and
decides commit/abort.
 All vote yes  PRE-COMMIT
 Otherwise  ABORT

4. Participants receive
1. PRE-COMMIT reply ACK
2. ABORT abort

5. Coordinator receives ACKs
then sends COMMIT to those it
received an ACK from.

Freitag, 12. Dezember 2008 7René Müller Systems Group, Department of Computer Science, ETH Zurich

Coordinator

start wait for
votes

wait for
ACKs

aborted

send
VOTE-REQ

All vote yes 
send PRE-COMMIT

Some vote no 
send ABORT

Timeout  decide abort and
send ABORT

committed

all ACKs received  send
COMMIT to everybody

Timeout on all ACKs
send COMMIT to ACK nodes

Freitag, 12. Dezember 2008 8René Müller Systems Group, Department of Computer Science, ETH Zurich

Participant

wait for
VOTE-REQ

committable

aborted

vote no 
send NO and abort

uncertain

PRE-COMMIT received
 send ACK

ABORT
received
 abort

Timeout  decide abort

Participant is uncertain.
It cannot unilaterally decide.
 start Termination Protocol
(same as in 2PC)

vote yes 
send YES

committed

COMMIT
received
 commit

Even tough decision is commit.
Participant cannot commit yet.
 Violation of NB rule (others
may still be uncertain)
 start Termination Protocol

Timeout

Timeout

Freitag, 12. Dezember 2008 9René Müller Systems Group, Department of Computer Science, ETH Zurich

Termination Protocol

1. Elect new coordinator
2. Coordinator sends STATE-REQ to all processes in the election.
3. All operating processes report their state
4. Coordinator applies Termination Rules based on state reports:

TR1: If some process is aborted send ABORT
TR2: If some process is committed send COMMIT
TR3: If some process is uncertain decide abort and send ABORT.
TR4: If some processes is committable but none is committed

resume 3PC as new coordinator by (re-)sending PRE-COMMIT.

Freitag, 12. Dezember 2008 10René Müller Systems Group, Department of Computer Science, ETH Zurich

Coexistence of States

TR2Committed
TR2TR4Committable
TR3TR3Uncertain
TR3TR1Aborted

CommittedCommittableUncertainAborted

 For each feasible combination there is exactly one termination rule

Freitag, 12. Dezember 2008 11René Müller Systems Group, Department of Computer Science, ETH Zurich

Failures in 3PC

 Fact: Logging PRE-COMMIT
and ACKs does not help in
recovery.
  Logging identical to 2PC.

 Recovery from total site failures
 wait for last process that failed

(unless independent recovery
possible)  termination protocol
must include last failing process.

 Communication failures
 Partitioning can occur
 Partition may decide differently 

inconsistency

 Protocol does NOT tolerate
communication failures.

 Solution: Use Quorums, i.e.
decide only when majority of
processes are participating. 
introduces blocking again, of no
quorum can be obtained.

Freitag, 12. Dezember 2008 12René Müller Systems Group, Department of Computer Science, ETH Zurich

Assignment 7.14

(10)Committed
(9)(8)Committable
(7)(6)(5)Uncertain
(4)(3)(2)(1)Aborted

CommittedCommittableUncertainAborted

Prove correctness of co-existence table.

(symmetry  only 10 cases)

Freitag, 12. Dezember 2008 13René Müller Systems Group, Department of Computer Science, ETH Zurich

Coexistence Table: simple cases

(1) Aborted—Aborted: no failures, a
NO vote  abort.

(2) Aborted—Uncertain: p1 votes NO
and unilaterally aborts, p2 votes yes
and is uncertain.

(5) Uncertain—Uncertain: p1 and p2
vote YES, however, do not yet know
the decision made by the
coordinator.

(6) Uncertain—Committable: after
situation (5) the coordinator sends
PRE-COMMIT. p1 received it before
p2  p1 committable while p2 still
uncertain.

(7) Uncertain—Committed: prevented
by NB rule. When committed there
are no operational uncertain
processes.

(8) Committable—Committable: step
(6) after p2 got PRE-COMMIT

(9) Committable—Committed: p2 has
received COMMIT p1 not yet.

(10) Committed—Committed: step (6)
after p1 also received COMMIT.

Freitag, 12. Dezember 2008 14René Müller Systems Group, Department of Computer Science, ETH Zurich

Coexistence Table: remaining cases

(3) Aborted—Committable
(no communication failures)
Abort possible if
 In termination protocol when

Committable  everybody voted yes
 Hence, processes are either

uncertain or committable.
 Abort then only in termination

protocol.
 Consider first round that would

decide abort
 Abort if some are uncertain

processes are operational 
impossible (no communication
failures)

(4) Aborted—Committed
Commit is only reached if committable

before.
However, (3) says impossible

Freitag, 12. Dezember 2008 15René Müller Systems Group, Department of Computer Science, ETH Zurich

Assignment 7.17

 Describe scenario with site-failures only where a
committable process still would lead to an abort.

P0

P1 P2

VOTE-REQ VOTE-REQ

YES YES

uncertain uncertain

PRE-COMMIT

committable uncertain

termination protocol

STATE-REQ

“I am the only one alive and
uncertain so I abort”

Freitag, 12. Dezember 2008 16René Müller Systems Group, Department of Computer Science, ETH Zurich

Assignment 7.17

1. P0 sends VOTE-REQ to P1 and P2

2. P1 and P2 both reply with YES
3. P0 sends PRE-COMMIT to P1 but fails before sending it to

P2. Thus, P1 is committable whereas P2 is still uncertain.
4. P1 fails.
5. P2 times out for the PRE-COMMIT and starts termination

protocol.
6. P2 sends out STATE-REQ.
7. P2 times out for replies and since it is the only one alive,

determines abort since it is uncertain.

Freitag, 12. Dezember 2008 17René Müller Systems Group, Department of Computer Science, ETH Zurich

Assignment 3 (a)

 Read One-Write All (ROWA) Systems
 Advantage cheap reads: one local read
 Disadvantage expensive writes: N writes

 ROWA suitable for read-dominated loads

 Apparent trade-off: read costs  write costs

 Synchronous Update Everywhere ROWA: cheap reads expensive writes
 Asynchronous Update Primary Copy: cheap writes expensive reads

(local read may be out-of-date)

 Is there something in-between, i.e., not write-all and read “a few”?

Freitag, 12. Dezember 2008 18René Müller Systems Group, Department of Computer Science, ETH Zurich

Quorum Systems

 Improve performance with availability in replication.
 Balance costs between read and write operations.
 Reduce number of copies involved in updates

 Beispiel aus der Politik: “Für Verhandlungs- und Beschlussfähigkeit der
vereinigten Bundesversammlung ist die Anwesenheit von mehr als der
Hälfte (>50%) der Räte erforderlich. “ Dann “absolutes Mehr”.

Types
 Voting Quorums
 Majority Quorum (Quorum Consensus, “Gewichtetes Votieren”)
 Hierarchical Quorum Consensus

 Grid Quorums
 Tree Quorums

Freitag, 12. Dezember 2008 19René Müller Systems Group, Department of Computer Science, ETH Zurich

Quorums

Formal Definition:
 A quorum system S = {S1, S2, …, SN} is a collection of

quorum sets Si  U of a finite universe.
  i,j  {1, …, N} : Si  Sj  .

 For replication we consider two quorum sets: read quorum
RQ and write quorum WQ.

 Rules
 Any read quorum must overlap with any write quorum
 Any two write quorum must overlap

Freitag, 12. Dezember 2008 20René Müller Systems Group, Department of Computer Science, ETH Zurich

Majority Quorum

 Use vote to define quorum
 Each site has a non-negative voting weight.
 Majority = number of votes exceed half of the total votes

 For Assignment 3
 For simplicity, we assume each site has vote weight 1.
 N is the number of sites
 Let |S| denote the voting weight of a quorum set S.

 Rules for read quorum (RQ) and write quorum (WQ)
 |RQ| + |WQ| > N  read and write quorums overlap
 2 |WR| > N  two write quorums overlap

Freitag, 12. Dezember 2008 21René Müller Systems Group, Department of Computer Science, ETH Zurich

Quorum Sizes

 Rules for read quorum (RQ) and write quorum (WQ)
 |RQ| + |WQ| > N  read and write quorums overlap
 2 |WR| > N  two write quorums overlap

 The quorum sizes |RQ| and |WQ| determines the cost for
read and write operations.  minimize!

 Minimum quorum sizes for the inequalities are:

 Write quorum requires majority
 Read quorum requires at least half of the system sites

1
2
NWQ min 



 




2
NRQ min

Freitag, 12. Dezember 2008 22René Müller Systems Group, Department of Computer Science, ETH Zurich

Example
 Consider 4 sites
 min |WQ|=3 sites (majority)
 min |RQ|=2 sites (half)

P1 P2

P3 P4

write quorums overlap

P1 P2

P3 P4

read quorums
do not overlap

P1 P2

P3 P4

read and write
quorums overlap

Freitag, 12. Dezember 2008 23René Müller Systems Group, Department of Computer Science, ETH Zurich

Comparison with ROWA

 For ROWA we can think of:
 |RQ| = 1 and |WQ|=N.

 Any read overlaps with any write
 Any two writes overlap
 Reads do not overlap

 For Quorums: 1
2
NWQ 



 




2
NRQ

Freitag, 12. Dezember 2008 24René Müller Systems Group, Department of Computer Science, ETH Zurich

Assignment 3 (b)

 Load consists of R reads and W writes
 Normalized: R+W=1

 Cost ROWA = R + N W

 Cost Quorum = R  |RQ| + W  |WQ|

 For Minimum-sized quorums

















 1

2
NW

2
NRCost

Freitag, 12. Dezember 2008 25René Müller Systems Group, Department of Computer Science, ETH Zurich

ROWA
better

Quorum
System
better

ROWA – Quorum System

Write
Load

W=1
R=0

W=1/2
R=1/2

cost
N

1

ROWA

N/2 + 1

N/2

Quorum
System

W=0
R=1

Freitag, 12. Dezember 2008 26René Müller Systems Group, Department of Computer Science, ETH Zurich

Assignment 3 (c)

 Why has asynchronous replication lower cost than
synchronous replication?

 Cost for synchronous ROWA is
Cost ROWA = R + N W

 In terms of read/write operations asynchronous (primary
copy) has cost 1
 one direct write (master)
 one local read (possibly outdated copy)
 load independent

Freitag, 12. Dezember 2008 27René Müller Systems Group, Department of Computer Science, ETH Zurich

Updates

 However, this is not the full cost.
 Cost for propagating update sets (and reconciliation) also

need to be considered.

 Assume, updates are load-independent with update
frequency (rate r)

 Cost = 1 + r  (N-1)
 Thus, asynchronous, update primary copy is cheaper for

1N
1WNRr

WNR1)(Nr1








Freitag, 12. Dezember 2008 28René Müller Systems Group, Department of Computer Science, ETH Zurich

References

 R. Jiménez-Peris, M. Patiño-Martínez, G. Alonso, B.
Kemme: Are Quorums an Alternative for Data
Replication? ACM Transactions on Database Systems,
2003.

http://doi.acm.org/10.1145/937598.937601

