
Po
st

er
ASA/MA2000

The Joint Symposium

ASA/MA2000
The Joint Symposium

Thursday, September 14
16:45 - 18:15

1111 Mobile Agent: Enriching Document Management and Distribution for Mobile Agent: Enriching Document Management and Distribution for Mobile Agent: Enriching Document Management and Distribution for Mobile Agent: Enriching Document Management and Distribution for
Mobile Design WorkMobile Design WorkMobile Design WorkMobile Design Work
Mark Allen, Geof Staniford, and A. Taleb-Bendiab

2222 Fault-Tolerant Mobile Agents in MozartFault-Tolerant Mobile Agents in MozartFault-Tolerant Mobile Agents in MozartFault-Tolerant Mobile Agents in Mozart
Ilies Alouini and Peter Van Roy

3333 A Knowledge-based Internet Agent System with a Formal Verification A Knowledge-based Internet Agent System with a Formal Verification A Knowledge-based Internet Agent System with a Formal Verification A Knowledge-based Internet Agent System with a Formal Verification
FacilityFacilityFacilityFacility
Tadashi Araragi

4444 Active Networking, QoS and Virtual RoutersActive Networking, QoS and Virtual RoutersActive Networking, QoS and Virtual RoutersActive Networking, QoS and Virtual Routers
Florian Baumgartner and Torsten Braun

5555 Experiences with State-of-the-Art Migration StrategiesExperiences with State-of-the-Art Migration StrategiesExperiences with State-of-the-Art Migration StrategiesExperiences with State-of-the-Art Migration Strategies
Peter Braun, Christian Erfurth, and Wilhelm Rossak

6666 MobiliTools: A Toolbox for Agent Mobility and Interoperability Based on MobiliTools: A Toolbox for Agent Mobility and Interoperability Based on MobiliTools: A Toolbox for Agent Mobility and Interoperability Based on MobiliTools: A Toolbox for Agent Mobility and Interoperability Based on
OMG StandardsOMG StandardsOMG StandardsOMG Standards
Bruno Dillenseger

7777 Internet Service Delivery Control with Mobile AgentsInternet Service Delivery Control with Mobile AgentsInternet Service Delivery Control with Mobile AgentsInternet Service Delivery Control with Mobile Agents
Manuel Günter and Torsten Braun

8888 Agent-based Virtual LaboratoryAgent-based Virtual LaboratoryAgent-based Virtual LaboratoryAgent-based Virtual Laboratory
Goran Kimovski, Danco Davcev, and Vladimir Trajkovic

9999 Application Centric Mobile Agent Systems: Bringing the Focus Back to Application Centric Mobile Agent Systems: Bringing the Focus Back to Application Centric Mobile Agent Systems: Bringing the Focus Back to Application Centric Mobile Agent Systems: Bringing the Focus Back to
the Applicationsthe Applicationsthe Applicationsthe Applications
Paulo Jorge Marques, Luís Moura Silva, and João Gabriel Silva

10101010 Xmile: An Incremental Code Mobility System based on XML TechnologiesXmile: An Incremental Code Mobility System based on XML TechnologiesXmile: An Incremental Code Mobility System based on XML TechnologiesXmile: An Incremental Code Mobility System based on XML Technologies
Cecilia Mascolo, Wolfgang Emmerich, and Anthony Finkelstein

11111111 Mobile Agent Platform for Mobile DevicesMobile Agent Platform for Mobile DevicesMobile Agent Platform for Mobile DevicesMobile Agent Platform for Mobile Devices
Patrik Mihailescu, Elizabeth A. Kendall, and Yuliang Zheng

12121212 Simulating Mobile Agent Based Network Management using Network Simulating Mobile Agent Based Network Management using Network Simulating Mobile Agent Based Network Management using Network Simulating Mobile Agent Based Network Management using Network
SimulatorSimulatorSimulatorSimulator
Otto Wittner and Bjarne E. Helvik

Contents
Ab

str
ac

ts

http://www.ethz.ch/
http://www.inf.ethz.ch/ASA-MA/

Mobile Agent: Enriching Document Management and
Distribution for Mobile Design Work

Mark Allen Dr. Geof Staniford Professor A. Taleb-Bendiab
M.Allen@livjm.ac.uk G.Staniforn@livjm.ac.uk A.Talebbendiab@livjm.ac.uk

Abstract and Structure
This poster describes work in progress which is focusing on the application of multi-agent
systems to support distributed collaborative work in a large scale industrial setting (the Enrich
project). The poster provides a brief description of the industrial problem, and then presents an
argument factorisation technique, which is used to support argument generation for the overall
purpose of reducing information overload to system designers. In addition the poster details our
proposed systems architecture as well as work in progress upon the theoretical basis for our
design and implementation.

Background
The Enrich project is concerned with supporting distributed design through the use of resource
management techniques. Under development is an Inventory Management System to facilitate
product development for design engineers. To help them access and manage design resources and
share information and data with other partners.

The primary aim is to provide an inventory of documents and other resources related to a project.
Each user will be able to view the inventory in a variety of ways that suit them best. They will be
able to add documents, collaborate with other users, change documents and view documents from
their own and other projects. No guarantee can be made as to the type of the document and the
necessary applications will also be stored in the information repository.

Users will need to be informed of any changes to the documents they own, or are currently
tracking. They will also need an automated, and transparent, method of tracking new documents
within subject areas they have registered an interest in.

The shared information repository will be highly distributed on a global scale. The server side of
the system is to be built using Suns’ Java Enterprise Edition (JEE), which will be extended by a
multi-agent systems layer.

Argumentation-based system
It is likely that vast amounts of data will be available to the designer. The problems of
information overload have been highlighted as an important issue in the world of distributed
systems and the World Wide Web. It is therefore necessary to add to the Enrich Inventory
Management System methods of filtering the available data.

There has been much research into information filtering in recent years. Many of these rely on
keyword searches, which have proven unsuccessful in very large databases. Ideally natural
language processing would be used but this is some way from practical implementation in large
distributed systems.

In our system the document repository inventory is defined by a tree of XML documents that
describe content, location, necessary software and other meta information about documents. This

mailto:M.Allen@livjm.ac.uk
mailto:G.Staniforn@livjm.ac.uk

tree will become very large indeed and navigation, by designers, through the virtual space is an
extremely important issue. An argument generator previously developed in the domain of
artificial intelligence and law is to be adopted to support collaborative conflict resolution and
design resources management activities. This is a case based multi-agent system that uses a
compositional mechanism to construct, from previously factorised cases, a rhetorical argument in
favour of a given legal case.

The factors of a case are extracted from the original document through a knowledge elicitation
process. Each pertinent fact becomes a factor that tends to support one side or the other of the
rhetorical argument. Factors can be binary or some enumerated value. External information
relevant to a case is dealt with through the concept of abstract factors. These form a multi-level
hierarchy in which atomic factors support or militate against higher level abstract factors.

It is envisaged that this system can be developed to argue that a particular document should be
included in a users view of the inventory. The users preferences are known to the system, subject
area, roles and responsibility. The user can also declare interests in particular subjects. We intend
to specify this type of information to the agents in a (normative) deontic specification that is
based upon a computable form of first order predicate logic. Armed with such information an
intelligent and autonomous agent roams the distributed inventory accessing documents and
building an argument for the inclusion of the document in the users list. If the argument is strong
it will be passed on to the user for him to make his own decision. If it is not (the argument system
produces both sides of the debate) the document is dropped and the agent moves on to the next
one.
The factorisation of the documents will be based on the XML schema, which are attached to all
documents, groups of documents, subjects and projects in the information repository. This
factorisation is a development from the legal case system. The fact of a case now replaced by the
semantic meaning of a section of text.

Why Mobility?
The system is designed for large data sets. These will be distributed over many servers. We
consider that moving many, possibly large, documents over the network is inefficient and
unnecessary. Only the agent (or resource manager) and its meta information including arguments
needs to be transmitted. The document itself will only be transmitted if the user is persuaded by
the agent’s argument and specifically requests it. It would therefore be more suitable for the agent
to travel to the data store and carry out its work at the site. It would then return with any
arguments considered strong enough and present them for the user to review.

A second, important, use for mobile agents in the Enrich environment is to support maintenance,
both of the system itself, and of the inventory. For example if a new document is added to the
inventory other documents will need their XML file updated to hold a reference to the new
document. As some of these documents are likely to be on another server somewhere we will
create an agent to propagate the new information through the system.

Future Work
There are two areas of research that need to be undertaken. One we need to experiment with the
argument generator to determine the boundaries for which readable arguments can be created, and
to show empirically that they are useful – that is the users number of wrong “hits” is significantly
reduced. We also need to investigate if it is possible to automate the generation of the factors of a
document. We envisage this part of the system as an application of natural language processing

supported by machine learning. Initially the factorisation would be poor but with feedback from
the human user the activity would become progressively refined.

This poster will describe a work in progress

Fault-Tolerant Mobile Agents in Mozart

Ili�es Alouini and Peter Van Roy�

Introduction

In any wide-area distributed system such as the Internet, fault tolerance is crucial for real-world

applications. We describe a new practical fault-tolerant mobile agent platform. The agent platform is

built on the top of a global store abstraction [1, 2] that provides a globally coherent and fault tolerant

memory. The global store abstraction is implemented as a user library that runs on the Mozart

platform. The implementation does not require recompiling the platform. Mozart is a general-purpose

development platform for open, robust distributed applications that is based on the Oz language [3].

The global store implementation is based on Mozart's re
ective fault model and takes full advantage

of the platform's network-transparent properties.

The global store abstraction

A global store consists of a set of objects replicated on several processes. A user is any computation

that is part of an OS process running Mozart. Users can connect to or disconnect from a store

dynamically. This adds or removes processes from the global store. A user invokes objects by initiating

a transaction, which calls the objects. It is possible to use the store so that a user's object updates are

seen instantaneously by that user without waiting for the network. This implies a possible speculative

execution, which is completely managed by the store. Users invoke objects without worrying about

concurrency control or store failure. Both concerns are managed by the store. Because Mozart is

network transparent, users can communicate and collaborate by sharing a global store. The global

store tolerates any number of user failures, as long as it exists on at least one process. The store can

migrate without dependencies, i.e., the migration depends on no �xed process.

The store is lightweight and requires no persistence to recover from failure. The store uses process

redundancy; with n processes it tolerates up to n� 1 fail-stop process failures.

Mobile agents using the global store abstraction

One of the challenges for mobile agent platforms is to provide robust and fault-tolerant mobile agents

[4, 5]. We build an agent API on top of the global store that provides fault tolerance, agent mobility

without site dependencies, and permits home communication without any dependencies. In general,

an agent can create any number of global stores. A �rst global store is used for the agent's own state,

so that it can migrate. A second global store is shared between agents, for communication. The

second global store is used to implement Send & Receive operations in a few lines of code. Our agents

have the following properties:

� An agent can move from one site (i.e., OS process) to another, e.g., to reduce network latency.

� The agent's internal state is maintained when moving.

� Agents live in Mozart's shared computation space and can therefore communicate any data

including compound structures, procedures, classes, etc.

�Universit�e catholique de Louvain, D�epartement d'Ing�enierie Informatique, B-1348 Louvain-la-Neuve, Belgium. E-

mail: fila,pvrg@info.ucl.ac.be

1

� An agent can continue to function despite network inactivity (disconnected operation).

� Agents are not a�ected by process or host failures, if at least one process survives somewhere.

� Agents do not reference the �le system when they move (except possibly initially, when creating

a global store). When an agent moves from one site to another, there is no need to load agent

classes from a �le system, e.g., like in IBM Aglets. The agent classes are transferred in a

transparent way through interprocess communication.

Mobile agent API

We de�ne a mobile agent to be any distributed computation that has the ability to move from one

site to another. An agent is a set of concurrent tasks where a task is a computation that uses the

resources of a single process and can communicate or collaborate with other agents. Here is an API

that allows to program an agent:

� Agent creation: MA={New Agent.agent init(NewObj AgentStore)}, with arguments:

Agent.agent (input agent class), NewObj (returned procedure to create new objects in the

agent store), and AgentStore (returned reference to agent store).

� Execute the task F of agent MA: {MA run(F)}, with argument F (a task). In Mozart, the task

is de�ned as a functor, which is a �rst-class data structure de�ning a component speci�cation.

A functor de�nes the process-speci�c resources the task needs. The functor F can be created on

the
y during task execution.

� Move the agent MA to host IPadd and execute F remotely: {MA move(IPadd F)}, with argu-

ments IPadd (IP host address) and F (a task). The original task is not moved, but because the

global store contains the agent state and depends on no �xed process, the result is a move whose

strength is intermediate between weak and strong mobility.

� Move to home site: {MA movehome()}.

� Communicate with other agents: {MA send(M)} (send asynchronously message M to agent MA)

and {MA receive(M)} (receive message M at agent MA).

Conclusion

This extended abstract explains the highlights of our simple mobile agent platform. We have shown

how a fault-tolerant agent platform can be built naturally using a general-purpose platform for open

distributed computing augmented with the global store abstraction. Our current research includes

building other high-level abstractions for fault tolerance, secure distributed programming, and the

implementation of agent-based applications.

References

[1] Ili�es Alouini. Global Store Module. Available at
http://www.mozart-oz.org/mogul/info/alouini/globalstore.html, April 2000.

[2] Ili�es Alouini and Peter Van Roy. A Practical Fault-tolerant Store Abstraction for Multiple Application

Domains. To be submitted, July 2000.

[3] Mozart Consortium. The Mozart Programming System (Oz 3). Available at http://www.mozart-oz.org,
January 1999.

[4] Holger Pals, Stefan Petri, and Claus Grewe. FANTOMAS: Fault Tolerance for Mobile Agents in Clusters.
IPDS 2000 Workshops, LNCS 1800, pages 1236-1247, 2000.

[5] Detlef Schoder and Torsten Eymann. The Real Challenges of Mobile Agents. Communications of the ACM
(43) 6, pages 111-112, June 2000.

A Knowledge-based Internet Agent System
with a Formal Verification Facility

Tadashi Araragi

NTT Communication Science Laboratories
2-4 Hikaridai, Seika-cho, Souraku-gun, Kyoto, 619-0237 Japan

e-mail: araragi@cslab.kecl.ntt.co.jp
http://www.kecl.ntt.co.jp/csl/ccrg/members/araragi

Overview
In this poster, we present a knowledge-based agent system focused on Internet applications
like e-commerce. This system has a logic-based programming language and a formal verifica-
tion facility for agent programs written in this language. With this language, we can express,
in a simple way, the characteristic behaviors of Internet agents, such as agent name passing,
dynamic retrieving and loading of programs, and migration. In addition, we can verify its
agent programs based on CTL model checking. This system is implemented in Java, and we
call it Erdös.

Programming of Erdös
One of the characteristic features of Erdös’s programming is division of agent communication
protocols and the procedures that do not require communication between agents. Erdös’s
programming language is used to describe the protocols, and the procedures that do not
need agent communication are implemented in Java as external methods that are called from
Erdös’s agent program. The language stems from Halpern’s knowledge-based program. Each
agent of Erdös has a knowledge base that consists of logical formulas. The program consists
of subprograms, and each subprogram is a sequence of “test-actions” that are executed in
the order. A test-action has the form “If test then action1, ..., actionm else actionm+1, ...,
actionn;” The test is a logical formula. In execution of this test-action, if the test formula is
derived from the current knowledge base, then action1, ... are executed, otherwise actionm+1,
... are executed. For this derivation, we support a restricted first-order logic and a logic of
belief (KD4). We have selected a few actions for Internet agents: add, rm, call, idle, ex call,
go, create, stop, resume, kill. Example fragments of a program are given below.

if Info(ds_name,?ds) and Req(ds,?msg)

then add(?ds: Req(self,?msg)), rm(Req(ds,?msg)); --(1)

if Info(ds_name,?ds) and Info(?ds,?msg)

then call(self: contract_subprg) else idle; --(2)

if Info(cond,?cond) then ex_call(judge-condition,Arg(?cond)); --(3)

In (1), “?ds” is a variable that is instantiated in the test process, and the substitution
is done over the test-action. “self” is also a variable instantiated by the name of the agent
executing the test-action. In this fragment, the agent checks if it has the name of a directory
sever and a message to send to the sever. If it finds these, then the message (the formula
Req(self,?msg)) is added to the knowledge base of the directory server (i.e. the message is
sent). Here, note that a correspondent is dynamically determined by using a variable(?ds).
In (2), if the test is successful, the agent calls the subprogram contract subprg, otherwise
it waits in the idle action until the test becomes successful. Using the idle action, agents
can synchronize their behaviors. If an agent name is specified in the call action instead of

“self”, the subprogram is dynamically downloaded from the agent. In (3), the agent judges
whether the condition is acceptable by using the external method judge-condition through
the ex call action. The return value is given in its knowledge base in a logical formula.

Verification of Erdös
Agent programming is a type of distributed programming. Therefore, the verification of
program is a difficult task because of its asynchronous behavior. Erdös offers a formal ver-
ification facility based on the well known model checking algorithm of CTL. The essential
point of our verification method is the transformation of our agent programs, which involves
a deduction procedure on the knowledge base, to a Boolean formula of the total transition
relation of the asynchronous behaviors of agents. CTL model checking deals with only finite
state systems. In Erdös’s verification, if the programmed system is infinite state, we abstract
the infinite state parts of the program manually so that the system becomes finite state. The
simple structure of Erdös’s programs as well as the isolation of external methods enables
this verification and abstraction. For many agent systems that consist of Java and agent
libraries, it seems impossible to formally verify their programs directly.

Programming Environment of Erdös
Our programming environment is illustrated in Fig. 1. The left side is an editor with a func-
tion of checking the syntax of agent programs. The center is a simple visual simulator. Each
rectangle expresses a host machine, and the ellipsoids in the rectangles express agents. For
each agent, we can monitor the state of the execution, the knowledge base, and the currently
executed test-action. We can change the processing speed of each rectangle manually. The
right side of the figure is our verification tool. CTL model checking is calculated with BDD,
and its performance is very sensitive to “variable order”. Our tool enables us not only to
verify CTL specifications but also to observe the structure of BDD during verification so
that we can analyze the proper variable order.

References

1. T. Araragi and K. Kogure: Dynamic Downloading of Communications Protocols Using a Logic-
Based Agent System, Proc. of Workshop on Computational Logic in Multi-Agent Systems
(CLIMA-00), Imperial College, London, pp. 27 - 34, 2000.

2. T. Araragi, P. Attie, I. Keidar, K. Kogure, V. Luchangco, N. Lynch and K. Mano: On Formal
Modeling of Agent Computations, Proc. of the 1st Goddard Workshop on Formal Approaches
to Agent-Based Systems (FAABS 2000), LNCS, Springer, 2000 to appear.

Editor Simulator Verifier

Fig. 1. Programming environment

���������
	��
	����������������������! #"���$&%����'�)(�"+*-,.�/(��0	1�02
3/465'798;:'<>=�:'?�@BA�:C79DE<�FG7IH�:'<�JLKM5'79NEDOFP<L=�79:'?�<

QR<�NEDE86DE?�DOF-5'SUT�5�@BVW?�DOFG7YX[ZG86FP<�Z\F]:'<�JL^_V�V14;86FPJa`b:CDEc�FP@d:CDE8;ZGN
ef<�86g'FG79N986D�hi5'S/=�FG79<�F'jWk_FP?�l�7�m?�Z9n)NODO7I:'NENOFdoGp[jqT�r�s�tCp�oPuv=wFG7I<�F

x�yfzq{}|]~d����zq�9|�y
K�c�F-Vq5�8;<�DEN�5'S/8;<0DOFG79FPNOD�S�5'7�DEc�F]@d:CV�V18;<�A�5'S+79FPNO5�?�79Z\F]79FPNOFG7EgC:CDE865�<�N�:C7EF]DEc�F]lq5'79J�FG79N
5'S�7EFGA�8;5�<�NG�/�f86��FG7EFP<�D�7EFGA�865�<�N�@d:Ph�NE?�V�Vq5'7EDMJW8���FG79FP<0D+7EFPNOFG7EgC:CDE865�<�V�7E5'DO5[Z\5�4;NG�/K�c�8;N+8;N
<�5'D�<�FPZ\FPNENE:C798�46h�DEc�F_FP<�DE867EFf<�FGD���5'7End5'S�:'<iQOX��+�)�Ug'FP<i�_86DEc�8�<d:'<vQEX[��86D!@d8;A�c0D�@d:Cn'F
NOFP<�NEF!DO5YV�7E5�g)8;J�F!NOFGg'FG79:'4[:C7EFP:'N��_86DEc�J�8��qFG7EFP<�D+NE?�V�Vq5'7EDOFPJ-7EFPNOFG79g�:CDE865�<�@BFGDEc�5[J�NG�/=�F\s
ZG:'?�NOF�5'S�DEc�8;N/��F��_8�4;4�<�5'D
7EFGS�FG7
DO5�:'<BQOX�����N
<�FGD��w5'7En�lW?�D�DO5]:�NO5]ZG:'4;46FPJB�_FPNOFG7EgC:CDE865�<
�f5�@d:'8;<����_�]�Ijq7EFGV�79FPNOFP<0DE8�<�Ai:�Z\FG7EDE:'8;<bDO5'Vq5�465'A'hL7EFGA�:C7IJ�8;<�Ai7EFPNOFG7EgC:CDE865�<bV�7E5'DO5[Z\5�4;N
5'7_:'J�@v8;<�8;NODO7I:CDE865�<}�
^�D/DEc�F!lq5'79J�FG7+5'S�:f�_��NOFGg'FG79:'4[@d:CV�VW8�<�A�NM@d:�h]lqFw<�FPZ\FPN9NE:C7Eh'�!�fl)g)865�?WNE46hYDEc�F��fX)�Y�
DO5-�Y8���X[FG7Eg]@d:CV�VW8�<�A_8;N+DEc�F�@B5�NOD�V�7E5'lW:ClW4;FwZG:'NOF]� =�=�=� -p'p�¡¢�/=�FPZG:'?�NOF�5'S1NEZG:'4�:ClW8;4;86D�h
8;NEN9?�FPNw:'<�QEX[���_8;4;4�l�FY8;<�DOFG7EFPNODOFPJa8;<�@d:CV�VW8�<�A��fX[�f�£7EFPNEFG7Eg�:CDE8;5�<iDO5B�Y8��qFG7EFP<�DE8;:CDOFPJ
X)FG7Eg[8;Z\FPNfJ�FPZ\7EFP:'NE8�<�AiDEc�F�4;5�:'JL5'S�c�8;N�l1:'ZEn)l�5�<�F�795�?�DOFG79NG�]�Y<�DEc�F�5'DEc�FG7-c�:'<�JbFGg'FP<
DEc�F�@d:CV�VW8;<�A�5'SWJ�8��qFG7EFP<�DM�Y8���FG79FP<0DE8;:CDOFPJBX)FG7Eg[8;Z\FY���-XW�}ZG4;:'NENEFPN+@d:�h]lqF!<�FPZ\FPNEN9:C7Eh'j�:'N
86DU8;N
¤1<�:'4;46h�46FGS�D!DO5]DEc�F_:'<BQEX[��j��_cW8;Z9cB�Y8��qFG7EFP<�DE8;:CDOFPJ�X)FG79g)8;Z\F�T�5)J�F���5�8;<�DEN����]X�T����
:C7EF�?WNOFPJaS�5'7_�_c�8;ZIc>D�h)VqF-5'S�DO7I:�¥iZC�

¦ |�§B�9¨9©«ª#¬�©!yfzq­¯®�y�~±°�©U{q²��E�
©«¦ ®�³B³B�9y�¬
=�FPZG:'?�NOFB5'S�DEc�FBJ�h[<�:'@d8;Z�lqFPc�:Pg[865�?�7Y5'SwN9?�Z9c.���fN-:'<WJbDEc�FB5�g'FG79c�FP:'J´5'Sw:>Z\FP<�DO79:'4
8;<�NEDE:'<�Z\F'j1:'<�:CV�V�7E5�:'ZIcL5'SU?WNE8;<�Ad`b5'lW8;46F�T�5)J�F]DO5iDO7I:'<�NE4;:CDOF�DEc�F�J�86��FG7EFP<�D�7EFPNE5�?�79Z\F
7EFPNOFG79g�:CDE865�<bNEZ9c�FP@BFPN�8�N�S�:�g'5�?�7EFPJ}��^�S�DOFG7fDEc�F�8;<Cµ¶FPZ\DE865�<·5'S/ZG:CV1NE?�46FPNGj1:CA'FP<0DENf5[ZGZG?�V�h
DEc�F]lq5'79J�FG79N�5'S
:dc�5�@B5'A'FP<�FG5�?�N_79FPNOFG7EgC:CDE865�<LJ�5�@v:'8;<}j�NE?�VqFG7Eg[8;NE8�<�A�8�<�Z\5�@d8;<�AB79FPNOFG7Os
gC:CDE865�<�NG�bQR<
DEc�F�ZG:'NEF�5'S��]X¸@d:CV�V18;<�A>DEc�Fa:CA'FP<0D��_8�4;4UJ�FGDOFG79@v8;<�Fi:'<�:CV�V�795'V�798;:CDOF
@d:CV�V18;<�AaS�5'7�DEc�FdVW:'Z9n'FGDGj/7EFPZ\5�<[¤WA�?�79FdDEc�Fdlq5'79J�FG7-795�?�DOFG7�DO5�J�5·DEc�FdVW7E5'VqFG7]@d:CV�s
VW8;<�Ab:'<�J�DO79:�¥iZaZ\5�<�JW86DE865�<�8;<�Ab:'<�J�S�5'7E��:C7IJ�N�:¹ZG:CVWN9?�46Fa:'465�<�A¹DEc�FaVW:'ZEn'FGDG��NdVW:CDEc
DEc�7E5�?�A�c£DEc�F·7EFPNOFG79g�:CDE865�<�J�5�@d:'8;<�8;<£5'79J�FG7BDO5
Z\5�<[¤WA�?�79F·:CV�V�7E5'V�7I8;:CDOF>NEZ9c�FPJW?�4;8;<�A
@BFPZIc�:'<�8;NE@vN�8;<aFP:'Z9cL7E5�?�DOFG7P�
^º@B5'7EF�Z\5�@BVW46F\»>DE:'NOn>DEc�:'<bDEc�F�N9?�V�Vq5'7ED�5'SUJ�8��qFG7EFP<�D_�]X�T��wN�8;N�DEc�F��fX)�Y�
s¢l1:'NOFPJ
¼ 5�X�NE?�V�Vq5'7EDG���YX)�Y�½8;N�lW:'NOFPJa5�<>:'<aFP<�JaDO5BFP<WJ�N9Z9c�FP@BF'j1NO5�DEc�F-�fX)�Y�½@BFPNEN9:CA'FPN
?�NOFPJ
S�5'7�DEc�FiNEFGDE?�V
5'S�:'<
7EFPNOFG7EgC:CDE865�<�c�:Pg'F�DO5LlqFdDO79:'<WNOVq5'7EDOFPJ´DEc�795�?�A�c´DEc�Fi�_���
¾.F]V�795'V�5�NEF]:'<·:CV�V�7E5�:'ZIc·DO5dJ�h[<�:'@d8�ZG:'4;46hv<�FGA'5'DE8�:CDOF�DE?�<�<�FP4;N�lqFGD���FGFP<·DEc�F]8;<�A'7EFPNEN
:'<�J.FGA'79FPNEN]Vq5�8;<�DENY5'S�:'<¸�_�¿:'N]��FP4;4
:'N�DEc�FvNOFGDE?�V
5'SwDE?�<W<�FP4;N-NOVW:'<W<�8;<�Aa@�?W46DE86VW46F
�_�YN]��NOFGF]¤WA�?�7EF�o-46FGS�DI�U79FPÀ�?�8;798;<�A�:'<·8;<�DOFG79:'Z\DE865�<a5'S+JW8���FG79FP<0D�:CA'FP<�DENG�wK�c�FfDE?W<�<�FP4;N
:C7EF�NEFGDE?�VL?�NE8�<�AB@B5'lW8;46F-Z\5[J�F-DO5dFPNODE:Cl14;8;NEcaDEc�F�DE?�<�<�FP4�FP<�J�Vq5�8;<�DENG�
=�FP<�FP:CDEc´DEc�FdA'FP<�FG79:'4UÁWF\»[8;lW8;46D�h·5'S�DEc�Fv:CV�V�795�:'Z9c´?�N98;<�A·:'Z\DE86g'FdFP4;FP@BFP<0DENPj+DEc�8�N-c�:'N
DEc�F�:'J�gC:'<0DE:CA'F'j}DEc�:CDY:�ZG:CVWNE?�46F�l�FP8�<�AvNOFP<�D�l)h·:il�5'7IJ�FG7_7E5�?�DOFG7�DO5aDEc�F�¤1<�:'4MJ�FPNODE8�s
<�:CDE865�<�5'S+DEc�FfJW:CDE:�NEDO7EFP:'@¿VW:'NENOFPN�:'?�DO5�@v:CDE8;ZG:'4;46hiDEc�5�NOFY7E5�?�DOFG79NPj)��c�8;Z9c�c�:�g'FfDO5BlqF
Z\5�<[¤WA�?�7EFPJ}�!X)5�<�5�n)<�5��_46FPJ�A'FY:Clq5�?�D�DEc�F�DEc�FY<�FGD���5'7Env�_8;DEc�8;<v:'<a���Â8;N�<�FPZ\FPNEN9:C7Eh'j
�_c�8�46Ff:v@B5'7EF�Z\FP<�DO79:'4�:CV�VW7E5�:'Z9cL�w5�?�4�Ja7EFPÀ�?W867EF-NO5�@BF]n[8;<�Ja5'S�DO5'Vq5�465'A'h>J�:CDE:ClW:'NOF'�

o

A B

C

D

E

F

G
H

eth0

eth0
sol0 sol0 sol1

if1if0

if4if2if1if0if1if0if1

if0

et
h0

Host A Host B Host C

network connection

VAR A VAR B VAR C VAR D

3/86A�?�7EFboCÃBÄ�ÅRÆÈÇOÉ�ÊMÅ¶ËÌÅRÍ¢ÎIÏ9Ç¢Ð�ÑIÒBÓ/ÑÕÔ�Ï9ÐÖÒ�Ë/×�ÐØÇ¢ÙdÚ+ÛÕÅRÒPÇ¢ËUÄ�ÑGÜOÏEÇ¢ÅOÝBÏ9Ç!Ç¢Ù�Å�ÊMÓ£Þ'ÑIÍ�Ý�ÅRÍ¢Ë!ÏIÒ�Ý�Ç¢ß�Ò�Ò�Å¶Ä�Ë
ËÌÅRÇ¢ß�àBÞPá�Ú+ÛIÅ¶ÒGÇ¢Ë�ÏEÇ�Ð�Ò�Û9Í¢Å¶ËÌË�Ï9ÒCÝ�Å¶Û9Í¢Å¶ËÌË�à'ÑÕÐ�ÒGÇ¢Ë¶âWÍ¢ÐÖÛIÙGÇOÉ�Ô�ß�ÄØÇ¢Ð�à�Ä�Å�Ù�ÑÕË�Ç¢ËwÍ¢ß�Ò�Ò�ÐÖÒ�Û-ã�ÐØÍÌÇ¢ßCÏ9Ä}Ú+Ü�Ç¢ÐÖÎÕÅ
ÊMÑÕß�Ç¢Å�Í¢Ë�ÆäÑIÍMÅ¶Ôwß�ÄÖÏ9Ç¢Ð�ÑÕÒ�à�ß�Í¢à'ÑÕËÌÅ¶Ë

å |fy��
©!³�z¯æ¸²�®�¨9��®�z}�E|�yç§Yèêéë�9{�zq��®�¨bª#��zq�E²�©íìº|���z�©!{}­
K+5�FGgC:'4;?�:CDOF�DEc�FPNOFYZ\5�<�Z\FGV�DENGj[DO5�FP<�Z\5�?�<�DOFG7�DEc�F_V�7E5'l146FP@º5'SMZ\5�@�lW8;<�8�<�A-QR��S�5'7E��:C79J[s
8;<�A¹DOFPZIc�<�5�465'A�86FPNv:'<�J£^�Z\DE86g'Fbk_FGD��w5'7En[8;<�A´:'<WJ£DO5.l�F>:ClW4;F�DO5.VW7E5�g[8;J�Fa:¹DOFPNODOlqFPJ
5'SUNE?[¥�ZG86FP<0D�N986îGF���F�J�FGg'FP4;5'V�FPJL:'<b:CV�VW7E5�:'Z9cLDO5iFP@�?�4;:CDOF�Z\5�@BVW46FGDOF�:'Z\DE86g'F�7E5�?�DOFG79N
8;<�ZG4�?�J�8;<�A�DEc�F]:CV�V�7E5'VW798;:CDOFYQR�ïS�5'79��:C79JW8;<�A>� =�=�p'p':0¡¢�UK�c�8;N�:'4;4;5��_N�DEc�F]Z\5�@�lW8�<�:CDE865�<
5'S_79FP:'4�cW:C79J���:C7EF�:'<WJ¸795�?�DOFG79N��_86DEc£4;:C7EA'F�FP@�?�4;:CDOFPJ£DO5'Vq5�465'A�86FPNB?�N98;<�AbNEFGg'FG79:'4�NO5
ZG:'4;46FPJd�f8679DE?�:'4�^�Z\DE8;g'F���5�?�DOFG79N����/^��Y��79?�<W<�8;<�Af5�<dDEc�F�NE:'@BF_c�5�NEDG�/K_c�8;N/lW:'NE8�Z�8;J�FP:
5'SYZ\5�@�lW8�<�8;<�A¹7EFP:'4�c�:C7IJ���:C79F>�_86DEc�:'<£FP@�?�4;:CDOFPJ�DO5'Vq5�465'A'h�8;NBNEc�5��_<£5�<£¤1A�?�7EF´o
��7986A�c�DI�I�LK�c�FvZ\5�<�Z\FGV�D�NE8;@BV14;8�¤WFPNYDEc�F�NOFGDE?�V¸5'S�lW86A·DO5'Vq5�465'A�8;FPN�5�<¸5�<�46h.:'<
Z\5�?�VW46F
5'S�7EFP:'4}c�5�NODEN�:'<�J>:'4�465��_N�DO5d8;<�DOFGA'79:CDOF]79FP:'4}c�5�NODEN�:'<�J>:CV�V14;8;ZG:CDE865�<�N��_8;DEciDEc�FPNOF-FP@�s
?�4;:CDOFPJ¸DO5'Vq5�465'A�86FPNG�b^¿7EFP:'4wc�5�NOD�ZG:'<�<�5'D�J�8�NODE8;<�A�?�8�NEc¹lqFGD���FGFP<
7EFP:'4�:'<�J¸FP@�?W4;:CDOFPJ
<�FGD��w5'7En��Y=wFP8�<�AvFPÀ)?�86V�VqFPJ>��86DEcbZG:CV1:ClW46F�À)?�FP?�FP8�<�AvNOh[NODOFP@dNB� =�=�p'pCl�¡
:'<�JL795�?�DE8;<�A
@BFPZIc�:'<�8;NE@vNwDEc�F��/^���N�V�7E5�g)8;J�F�:�A'7EFP:CD�VW4;:CDOS�5'79@ëS�5'7�DEc�FfFP:'NEhi8;@BV146FP@BFP<�DE:CDE865�<v5'S
<�FG�ðZ\5�@BVq5�<�FP<�DEN�:'<�JLZ\5�<�Z\FGV�DENG�!^ºT�:CVWN9?�46FfQR<�DOFG7EV�7EFGDOFG7_79?�<�<�8�<�A�5�<>FP:'ZIc·�/^��Â8;N
?�NOFPJ·DO5dFGg�:'4�?�:CDOF]DEc�F-7EFPNE5�?�79Z\F]7EFPNEFG7Eg�:CDE8;5�<·@d:CV�VW8�<�A�NG�

ìº©UñP©!{}©!y��
©U­
� =�=�p'p':�¡ 3/465'798�:'<½=�:'?�@BA�:C7EDE<�FG7�:'<�J½K+5'79NODOFP<½=�79:'?W<}� ¼ ?�:'4�86D�h¸5'SYNEFG7Eg)8�Z\FL:'<�J

:'Z\DE86g'FY<�FGD��w5'7En[8;<�A�5�<vg[867EDE?�:'4�7E5�?�DOFG7!DO5'Vq5�465'A�8;FPNG�_òMó[ô�õqô9ö9÷Cø1ù�úIøWû�ô\üÕø1ýCþ
û�ÿÌ÷Cø1ý����L÷Cü���ÿ�ø��	�
÷Cø�
Pô\üEô\ø�öIô�÷Cø
��öPû�ÿ��Cô���ôGû��!÷Cü����Õj��YZ\DO5'lqFG7�uCp'p'p[�

� =�=�p'pCl�¡ 3/465'798�:'<L=�:'?�@BA�:C7EDE<�FG7f:'<�JbKM5'7INODOFP<L=�79:'?�<����Y867EDE?W:'4}7E5�?�DOFG79NPÃ�^ <�5�g'FP4
:CV�VW7E5�:'Z9c�S�5'7�À�5�N!VqFG7ES�5'79@d:'<WZ\F�FGg�:'4�?�:CDE865�<}������ý��äÿ�û��d÷�
�
��[û��[üEô�úIøWû�ôGüIø�ôPû
�Pô\ü���ÿÌöIô�������÷�
Eú9õ! "$#%#%#�j}X)FGV�DOFP@�lqFG7�uCp'p'p[�

� =�=�=� -p'p�¡��_5�4;:'<�JL=�:'4;@dFG7Pj13/465'798�:'<L=�:'?�@BA�:C7EDE<�FG7Pj�K+5'79NODOFP<�=�79:'?�<}j�:'<�JL`�:'<)?�FP4
 �m?W<0DOFG7P��^ºZ\5�<�Z\FGVWD_S�5'7_79NOg)V·5�g'FG7YJW8��qNEFG7Eg1��ú'&(&)&!��ú��*�*�+�
 "$#,#%#�jM�YZÕs
DO5'lqFG7fuCp'p'p[�

u

Experiences with State-of-the-Art Migration Strategies

Peter Braun, Christian Erfurth, and Wilhelm Rossak

Computer Science Department

Friedrich Schiller University Jena

D-07740 Jena, Germany

Peter.Braun@informatik.uni-jena.de

http://tracy.informatik.uni-jena.de

1 Introduction

In the last years, research and development of mobile agents made a great leap forward. Along with the

wide spread of Java based applications, mobile agents became extensively popular not only in research,

but also in industrial projects. Research in the area of mobile agents is looking at languages that are

suitable for mobile agent programming [2], and languages for agent communication [1]. Very much e�ort

is put into security issues [3]. Several prototypes of real-world applications in the area of information

retrieval, management of distributed systems, and mobile computing are in development.

The performance aspect of Java-based mobile agents has not been considered in literature, so far.

In our opinion, performance is of increasing importance as mobile agents are disseminated in more and

increasingly diverse application areas. Within the life-cycle of a typical mobile agent, we �nd several

occasions at which performance can be improved. We can divide these occasions into two classes according

to transmission aspects and runtime aspects. In the �rst class, all techniques are summarized that in
uence

network load and transmission time during agent migration. Transmission time is in
uenced by network

bandwidth and network latency, and can be reduced by code compression techniques and by restricting

the number of class �les and data items that must be transmitted. In the second class we place techniques

by which an agent's execution time can be improved, e.g. by using a sophisticated Java Virtual Machine.

In this paper we only deal with transmission aspects. Especially, we are interested in performance

e�ects that result from the migration strategy, i.e. the way how code and data are transmitted during

migrations. An agent typically consists of several class �les and a lot of data and state information.

The push-all-to-next strategy transmits the agent's complete code and the serialized agent (i. e. data and

state), as one package to the next destination platform. In contrast, the push-all-to-all strategy transmits

the complete code to all platforms the agent will migrate to, but the agent's data and state information

only to the �rst platform in the given itinerary. The pull-per-unit strategy transmits only data and state

to the next platform. Code must be downloaded on a per-class policy on demand. At last, in the pull-all-

units strategy, all classes are downloaded as one archive at once. We will show results of a performance

evaluation of these migration strategies. It will become clear that the migration strategy can in
uence

performance in a non-neglectable way. First experiments indicate that dynamic class loading and code

size in
uence the agent's performance.

2 Experimental Results

We show �rst results of experiments that we are performing using our mobile agent system Tracy, a

general purpose mobile agent system, implemented on top of the Java 2 platform. The main di�erence

of Tracy, as compared to other mobile agent systems, is that it provides a migration model that o�ers a

exible alternative to a pure agent model and a pure network transmission model. From the agent's view

it means that the agent server o�ers a multitude of di�erent migration strategies the agent can choose

from. From the researcher's point of view this means that the complete process of migrating an agent is

accessible to the programmer and can be adapted, so that new migration techniques can be implemented.

To perform the experiment we chose an application from the information retrieval domain. Each

platform has a database with documents of di�erent types. Each document is characterized by a set of

keywords. The agent has to visit each platform. First, it �lters all documents according to a given set

of keywords. The result is a set of interesting documents. Second, all these documents are examined in

detail, which results in the set of all signi�cant documents from which the agent takes a copy before

migrating to the next platform. To examine an interesting document, a speci�c class �le for the given

document type is necessary on the current platform. Therefore, an agent consists of one class �le for the

agent itself, which contains code to perform the �rst step and all auxiliary tasks Additionally, there are

�ve other class �les, each for one document type, which contain special code for the second step. If the

agent �nds a document of a speci�c type, the corresponding class �le must be downloaded dynamically.

The experimental setup consists of a cluster of �ve agent systems connected via a local area network

which can be classi�ed as a homogeneous network. On each platform we can change the number of

document types that the agent will �nd interesting. By this we can directly in
uence the number of

classes that will be downloaded. In the �rst experiment, the agent class �les are very small. The main

class is about 12 kByte, and each of the additional class �les is about 2 kByte. As a result, it can be seen

that the execution time has an upward trend for all migration strategies with the number of interesting

document types. This is because the agent's data increases as more interesting and signi�cant documents

are found. As could be expected, strategies push-all-to-next, push-all-to-all, and pull-all-units are almost

equal in time. In a case where no interesting documents exist, the pull-per-unit strategy is faster than

all other methods because only the agent class itself must be transmitted. However, even if only one

additional class �le must be loaded strategy pull-per-unit is about 17% slower than the push-all-to-next

strategy. With increasing number of document types the pull-per-unit strategy is in average more than

23% slower than the push-all-to-next strategy. This performance di�erence only results from the fact that

code must be downloaded dynamically.

In the second experiment we in
ated class �les to lengthen transmission times. The agent class �le is

about 12 kByte, again, the additional class �les are about 25 kByte, now. If no or only few additional

class �les must be downloaded, pull-per-unit strategy is now up to 33% faster than the other strategies. If

more than two additional class �les must be downloaded, this strategy is slower than all other strategies

for the same reason mentioned above. In the case that all classes must be downloaded, this strategy is

about 12% slower as compared to the other strategies. With longer class �les, the pull-per-unit strategy

performs better for more document types because of the overall di�erence of the network load.

3 Conclusions

In this paper we gave an brief overview of state-of-the-art migration strategies and compared them

with regard to transmission time. It could be seen that signi�cantly di�erent migration strategies may

lead to almost the same execution time. From these experiments can also be concluded that the pull-

per-unit strategy, which is used in several mobile agent systems today, is a bad choice in some cases.

Notwithstanding, we were able to show that there is no migration strategy that is best in every situation.

Additionally, on basis of our results, it can be inferred that a mobile agents' performance depends on

several factors, and not at least the dynamic behavior of the agent which in
uences class �le downloading.

Most of these parameters are inherent dynamical, i.e. they can not be predicted in advance. In conclusion

we may say that our results indicate that it is worthwhile to decide which migration strategy a mobile

agent should use. However, this decision process must be based on parameters that can not be known by

the programmer in advance.

References

1. J. Baumann, F. Hohl, N. Radouniklis, K. Rothermel, and M. Stra�er. Communication concepts for mobile

agent systems. In K. Rothermel, editor, Proceedings of the First International Workshop on Mobile Agents

(MA'97), Berlin, April 1997, volume 1219 of Lecture Notes in Computer Science, pages 123{135, Berlin, 1997.

Springer Verlag.

2. G. Cugola, C. Ghezzi, G. P. Picco, and G. Vigna. Analyzing mobile code languages. In J. Vitek and C. Tschudin,

editors, Mobile Object Systems: Towards the Programmable Internet (MOS'96), Linz, July 1996, volume 1222

of Lecture Notes in Computer Science, pages 93{110, Berlin, 1997. Springer Verlag.
3. G. Vigna. Mobile Agents and Securtiy, volume 1419 of Lecture Notes in Computer Science. Springer Verlag,

New York, 1998.

MobiliTools: A Toolbox for Agent Mobility and
Interoperability Based on OMG Standards

Bruno Dillenseger
France Télécom R&D (ex-Cnet), BP98, F-38243 Meylan Cedex, France

bruno.dillenseger@rd.francetelecom.fr

Introduction to MobiliTools

Mobile agent platforms typically come with a fixed combination of a
communication model, an activity model and a mobility model. As a matter
of fact, mixing autonomous activities with remote communication and
mobility requires an accurate assembly job in practice.

But is this a sufficient reason for turning mobile agent platforms into
strongly integrated frameworks? Such an approach leads to specific
platforms that are dedicated to specific needs, while there is no ultimate
agent model suited to every need. Moreover, these heterogeneous specific
platforms typically don’t interoperate very well.

However, several standardization efforts are in progress in the agent
technology field (e.g. FIPA, OMG’s Mobile Agent System Interoperability
Facilities). Voyager’s CORBA support and Grasshopper’s MASIF and FIPA
compliance show encouraging efforts towards interoperability.

In this context, MobiliTools intends
to provide a set of “middleware”
components that make it easy to build
a number of customized, ad hoc mobile
object/agent platforms, with various
communication and activity models,
while providing a basic level of
interoperability support, based on
OMG standards (CORBA, MASIF).

These components can be used either together, or independently in other
mobile agent platforms, to introduce interoperability bridges.

SMI, Simple MASIF Implementation

SMI is a minimal and generic MASIF implementation playing the role of
MobiliTools’ mobility component. MASIF’s framework consists of mobile
agents, identified by a unique name, acting on behalf of an authority,
moving from agent system to agent system, and executing in places. Agent
systems also have unique names, and are bound to an authority. Agent
systems implement the MAFAgentSystem CORBA interface, mainly for
managing agents lifecycle and mobility. A directory and lookup service for
agents, places and agent systems, is also available through the
implementation of the MAFFinder CORBA interface.

CORBA

Fig. 1. MobiliTools architecture

mobility

activity

services

communication

SMI straightforwardly implements this framework in Java, while
adding a couple of operations that are lacking in both MAFAgentSystem
and MAFFinder interfaces. SMI provides two possible levels of
customization, through the open implementation of two Java interfaces:
1. interface MobileObject has to be implemented by agents in order to react

to lifecycle events: creation, successful or aborted mobility, activity
suspension or resumption, death, and agent system shutdown. These
events trigger dedicated agent call-backs, which have to be defined by
the programmer, to actually manage agent activity;

2. interface AgencyPersonality may be optionally implemented by the
programmer in order to prepare for, and then acknowledge, agent
lifecycle events. An agency personality may also wrap every agent in
another MobileObject implementation in order to trap lifecycle events
and serialization. As a result, an agency personality makes it easier to
implement a management kernel or scheduler for agent activities, while
customizing an SMI generic agent system into a specific agent system.
At the present time, a passive agent model and an active agent model

with one thread per agent have been (very quickly and easily) implemented.
Another model, based on a synchronous programming model, is under
construction and promising, especially regarding scalability and
transparency issues. We are also envisaging the implementation of a sort of
ODP “cluster” model.

ACTS, Agent Communication Transport Service
ACTS is a CORBA service for transporting messages between

heterogeneous agents, whether mobile or not, and whether CORBA objects
or not. It can be operated in both a message push and a message pull model.
It may be wrapped and customized in a number of ways, to implement a
variety of communication models and architectures, but still supporting
interoperability at transport level. For instance, private mailboxes with
name-based addresses, multicast and unicast features, and a FIPA-
compliant communication architecture have been implemented.

Although it is independent of MASIF, ACTS may be regarded as a
complement enabling interoperability between agents for remote
communication, through the definition of extra CORBA interfaces.

On-going work. We are developing various agent activity models,
focusing on transparency, interoperability and scalability issues, for both
communications and mobility.

Availability. MobiliTools is available free of charge on signed demand, for
non-commercial use (mail bruno.dillenseger@rd.francetelecom.fr).

Acknowledgements.MobiliTools include contributions from Anne-Marie
Tagant and Huan Tran Viet. Design discussions have involved Stefan
Covaci, Alexander Yip and Jean-Bernard Stefani.

Internet Service Delivery Control with Mobile Agents

Manuel Günterand Torsten Braun
Institute of Computer Science and Applied Mathematics

Neubrückstrasse 10, CH-3012 Bern, Switzerland
http://www.iam.unibe.ch/ ˜ rvs/

Introduction

The rapid growth of the transport capacity of the Internet and the global trend towards liberalisation of the
telecommunication market forces the Internet service providers (ISP) to look for new revenues beyond pure
connectivity offerings. Therefore, ISPs that control their own network try to introduce new Internet services
including quality features such as premium transport or traffic privacy through encryption. However, before
the customer will pay for such services the following two problems need to be addressed: (1) How can the
provider prove that the desired service is really delivered to the customer? For example, it is difficult to
show that the provider transfers the customer’s data with strong encryption. (2) For services involving
collaboration of providers (e.g. end-to-end QoS) the question is how to find out who is responsible when
the service quality is less than guaranteed to the customer.

It is in the interests of the customers and of honest providers that the customer is able to verify the
permanent quality of a network service and to locate problems when they occur. We refer to this process
asservice delivery control(SDC).

For today’s Internet services there is only very limited support for service delivery control. If a customer
happens to detect a problem (which usually happens when the customer needs that service badly and does
not get it), phone-calls between administrators, local measurements, and manual browsing of log-files will
eventually lead to the identification of the problem source. Unfortunately, it is also not uncommon that the
involved parties will suspect each other and repudiate any guilt. Note, that this problem not only concerns
the relation between customer and provider but also between providers themselves. It is to be expected
that the problem becomes worse when new and more expensive network services are deployed that require
provider collaboration.

We propose to use a generic service delivery control architecture based on mobile agents. Mobile code
allows the customer to test the service where it is delivered. Software agents as well-defined code entities
facilitate the deployment of secured environments.

Mobility and Service Delivery Control

Mobile agents have been proposed for a wide range of tasks. However, code mobility has few provable
advantages besides of being a catching metaphor. The following reasons describe why mobile agents are
particularly useful for service delivery control agents.

• Data source location.Network services are per-definition deliveredin the provider network. It thus
makes sense to (at least pre-) process the measurement data there (at the source).

• Generic interface.By providing an agent platform at relevant sites the provider can give access in a
controlled fashion.

• Flexibility. A general-purpose agent programming language provides the expressive power needed
to cope with the unforseeable IP services of the future.

• Trust through source code.The customer sending the agents has insight to the agent’s code. There-
fore, the customer can verify what is being measured.

• Cross checking.A misconducting provider can easily fool a customer that relies on the measure-
ments published by the provider. In a a multi-provider service scenario the situation is even worse.
SDC agents can be sent out to perform active measurements by producing and measuring traffic at
different sites. Mobility allows the agents to virtually ’track-down’ the problem source.

http://www.iam.unibe.ch/~mguenter/
http://www.iam.unibe.ch/~rvs

• Performance. Mobile agents structure distributed computing thereby enabling the customer to col-
lect computing power to analyse the traffic. Furthermore, mobile agents preprocess the measurement
data where it is produced, thus reducing the network load.

Given these arguments we can say that even if the providers would allow their customers to access
SNMP (IETF RFC 1157) agents of their equipment, the expressive power of a mobile agent based SDC
approach exceeds by far what can be done by traditional SNMP based monitoring.

A Supporting Infrastructure for Service Delivery Control Agents

Agents are executed in protected node environments. We propose to locate these environments at the peer-
ing point between autonomous IP networks (see figure1 left). The SDC architecture should not facilitate
eavesdropping other customers’ traffic, spoofing of foreign IP addresses or denial-of-service attacks. Given
these requirements we foresee the following node architecture as shown in figure1 (right): At the peering
router, there is aT-componentthat serves as a high-performance and configurable packet copying mecha-
nism. It adds a high-accuracy time-stamp to the packet. The T-component forwards the requested packet
copies to theNode environment. Note, that for security reasons the agents donot have direct access to
neither the T-component nor the packet copies. The node provides an execution environment (user-level
thread in a ’sand-box’) for each agent. The agent’s execution environment contains an inbound and an
outbound packet queue secured with a policy-based filter which ensures that the agent can only see traffic
for which it is authorised.

Manuel H. Guenter Manuel H. Guenter

Manuel H. Guenter

Agent

(Access network)

Domain C

Peering Router

Peering Router

Customer Application

network
Customer premises

Domain A Domain B

Agent

Manuel H. Guenter

Manuel H. Guenter

T-Component

Peering router

Node Environment

Q
ueues

Filter

Agent

Policy Database

Sandbox

W
elcom

e procedure

Figure 1: Measuring at peering points (left). The node environment (right).

Examples of Customer Controlled IP Services

• IPSec (IETF RFC 2401) virtual private network control agents. We are developing SDC agents
that perform the following checks: (1) Leaking of Intranet traffic into the public Internet. (2) IPSec
protocol conformity. (3) Key exchange (IKE) activity survey. (4) Statistical tests on authentication
and encryption quality.

• Differentiated services (IETF RFC 2475) control agents.We are developing SDC agents that
perform the following checks: active and passive measurement of packet loss, delay and jitter. Our
goal is to develop an agent solution that can identify DiffServ providers which do not reserve the
guaranteed resources.

Agent – based Virtual Laboratory

Goran Kimovski Danco Davcev Vladimir Trajkovic
Faculty of Electrical Engineering and Computer Science,

University “Sv. Kiril i Metodij”, Skopje, Macedonia
gkimovski@intersoft.com.mk

1. Introduction
In this study, we try to extend our concept of Virtual Classroom [1] by adding a new service, that we call Virtual

Laboratory (VL). Namely, the concept of the VL is to design a system that offers a possibility to the attendees to share
different resources at once and work with them as if they were at the same place where (real) resources are. One
possible example can be to control remotely a robot system in a chemical laboratory from a PC connected on Internet.

In the system design, we use agents as entities that work on different tasks in the system. In the context of the VL
system, agents are seen as entities cooperating among themselves in order to accomplish a task, rather than separate
entities attempting to expose some anthropomorphic behavior.

The cooperation among agents is established through the act of exchanging messages. Having in mind the flexibility
and increased implementations of XML (eXtensible Markup Language) [2] as a next generation markup language on
the Internet, we decided to define all of the communication protocols in the VL system using XML.

Due to the limitations on the posters size we doesn’t comprehensively cover the object-oriented analysis of the
system, as well as the communication protocol’s XML definitions. Instead, we will present only the architecture of the
VL as well as the collaboration among agents in the system

2. Virtual Laboratory Model
The VL system should represent an alternative to the “classical laboratory”. The logical model of the VL system is

given in Figure 1.
Every user can work with the

system by using a web-based
interface. The Container Agent
enables different resources, with
different implementations of their
graphical views, to be placed on the
web-based interface. In this way
every specific resource can be
presented with a graphical interface
representing the nature of the
resource and can communicate with
the users in a manner that is close
to the “classical”.

View Agent is the key player on
the client side (the web browser
that the user is using to view the
VL system).

The system can hold many
definitions of different View
Agents, since every different
resource or a group of resources
should present an interface of its
own to the user.

server log
database

resource definitions
database

optional

run on
request

optional

(real)
resource

(real)
resource …

resource simulation
(Simulation Agent)

resource simulation
(Simulation Agent) …

communicating
interface

(Communication
Agent)

communicating
interface

(Communication
Agent)

…

resource protocol I (RPI)
several communicating possibilities:
� file exchange,
� shared file/database,
� other techniques

resource server
(Resource Selector

Agent)

Virtual Laboratory server (Server Agent)

resource view
<display interface>

(View Agent)

resource view
<display interface>

(View Agent) …
resource protocol II (RPII)

� socket comminucation

Laboratory applet
(Container Agent)

web-based user
interface

Laboratory applet
(Container Agent) …

web-based user
interface …

resource server
(Resource Selector

Agent) …
run on

request

resource definitions
database

server log
database

Figure 1 The architecture of the VL

All of the system communication goes using two agents that run on the VL server, the Server Agent and Resource
Selector Agent. Every View Agent in the system communicates with the Server Agent when a connection to the VL
server is required in order to communicate with a particular resource. The Server Agent handles different connection

requests and runs a Resource Selector Agent as a thread that handles the specific requests and passes back the resource
responses to the View Agent.

The Resource Selector Agent’s task is to get the request from the View Agent, find the appropriate Communication
Agent to communicate with the specific Simulation Agent and the real resource and then pass back and forth the
requests/responses between the View Agent and Communication Agent (with possible message translation).

The Communication Agent’s task is to enable the message translation and communication in general with the
Simulation Agent and the (real) resource. All of the agents mentioned above are to be implemented as Java classes, but
the set of Simulation Agents will be implemented as DCOM (Distributed Component Object Model) objects making
possible to share their definitions over a network, thus enabling a distributed computing of the resource requests. The
Simulation Agent’s task is to wrap around a physical resource in a software entity working in the VL system.

The whole system is separated in three different modules: view,
server and simulation module. Every of the modules contains its own set
of agents and other objects and communicates with the objects in the
other modules via defined protocols that give a possibility to exchange
several common messages.

Figure 2 represents the collaboration diagram of the scenario that
goes when the system is servicing a resource request. User initiates the
scenario by taking an action in the web interface. The Container Agent
communicates the action to the View Agent, which tries to connect to
the Server Agent in order to send the resource request. The Server Agent
is a connections coordinator and it doesn’t process the requests itself,
instead it runs a Resource Selector Agent that takes its role in the
communication between view and simulation modules. After the
acceptance of the connection request by the Resource Selector Agent, all
of the requests from the View Agent are passed through the
Communication Agent and Simulation Agent to the (real) resource. After
the resource processes the request and acts accordingly, the Simulation
Agent gets the result back and passes up through the Communication
Agent and Resource Selector Agent to the View Agent that shows the
result to the user, by redrawing it self for example.

9:run()
10:getResults()

8:request()
11:response()

7:request()
12:response()

4:manageRequest()

6:request()
13:response()

5:accept()
3:connect()

14:notify() 2:manageAction()

1:action() :ContainerAgent

:ViewAgent

:ServerAgent

:CommunicationAgent

:ResourceSelectorAgent

:SimulationAgent

:resource

Figure 2 Collaboration diagram

3. Implementation
Our system can run on three hosts.

The first host is the client machine of the
user browsing the VL via Browser. The
second host is the VL server, running
web server and Server and Resource
Selector Agents. This host is connected
to the log and resource definitions
databases as well. The third host is
connected to the (real) resource and runs
the Communication and Simulation
Agents.

(real) resource

Web Browser

 Web Page

Container
Agent

Resource def.

Web Server

Resource Selector Agent

 Web Server

Web
site

Server Agent

View
Agent

Server log

Resource Host

Communication Agent

Simulation Agent

Figure 3 The main components of the VL system

The main components of the VL system are shown on Figure 3.

References
[1] V. Trajkovic, D. Davcev, G. Kimovski, Z. Petanceska, “Web – Based Virtual Classroom”, Accepted for

presentation in IEEE proc. Of TOOLS USA 2000 Conf., Santa Barbara, California, USA, July 31 – August 3,
2000.

[2] Smith H., Poulter K., "Share the Ontology in XML-based Trading Architectures", Communications of the
ACM, Vol. 42, No. 3, (1999).

Application Centric Mobile Agent Systems:
Bringing the Focus Back to the Applications

Paulo Jorge Marques, Luís Moura Silva, João Gabriel Silva
CISUC, University of Coimbra, Portugal

{pmarques, luis, jgabriel}@dei.uc.pt

1. Introduction and Motivation
The Mobile Agent (MA) paradigm has now been around for some years. Although there are many advantages
associated to the use of mobile agents and many agent platforms are currently available from both the research
community and industry, they have not reached a wide acceptance. In fact, mobile agents have gained the
reputation of being “a solution looking for a problem” [1], and finding a “killer application” is still on the mind of
many practitioners of the technology.

Many reasons are typically pointed out on why the technology is not being so successful as it could. Examples
include security problems, lack of proper support for fault tolerance and lack of standards. Although these are
important problems, we believe that mobile agent systems are not widely deployed fundamentally due to different
reasons. The mobile agent community has been mainly focusing on the agent technology and on the mobility issue,
rather than on the support needed for real-world application development. The problem can be viewed in two
dimensions: the programmer and the user.

The Programmer
From the point of view of the programmer, constructing an application that uses mobile agents is a difficult
process. Current mobile agents systems force the development to be centered on the agents, many times requiring
the applications themselves to be coded as a special type of agents – stationary agents. When this does not happen,
special interface agents (service agents) have to be setup between the application and the incoming agents. These
agents must know how to speak with the mobile agents and with the application. Although the mobile agent
concept – a thread that can move to another node, is a very useful structuring primitive, all the currently required
setup is an overkill that prevents acceptance by the developers.

Since basically anything that can be done with mobile agents can be done using simple client/server remote
method evocations, the reasoning goes: “Mobile agents do not give me any fundamentally different (and needed)
mechanism, and at the same time force me to develop systems in a completely different way. Why should I bother
to use them?”

The problems include: the mobile agent concept is not readily available at the language level; the applications
have to be centered on the mobile agents; and a complicated interface between the agents and the applications must
be written. The programmers want to develop their applications as they currently do. Agents will typically play
only a small role on the application (90-10 rule: 90% traditional development, 10% mobile agents). Current
systems force exactly the opposite.

The User
From the viewpoint of the user, if an application will make use of mobile agents then it is necessary to first install
an agent platform. The security permissions given to the incoming agents must also be configured and the
necessary hooks to allow the communication between the agents and the application must be setup. While some of
these tasks can be automated using installation scripts, this entire setup package is too much of a burden for the
average user. Usually, the user is not concerned with mobile agents nor wants to configure and manage mobile
agent platforms. The user is much more concerned with the applications than with the middleware they are using in
the background. In the currently available mobile agent systems, the agents are central and widely visible. They are
not the background middleware but the foreground applications.

Another important issue is that the term “mobile agents” has very strong negative connotations that make the
dissemination of the technology difficult. The user is afraid of installing a platform capable of receiving and
executing code without his permission. This happens even though the existence of mobile code is present in
technologies like Java, in particular in RMI and JINI. The fundamental difference is that in those cases, the user is
shielded from the middleware being used. In many cases, using mobile agents does not pose an increased security
threat, especially if proper authentication and authorization mechanisms are in place. However, because the current
agent platforms do not shield the user from the middleware, the risk associated with the technology is perceived as
being higher, which causes users to back away from applications that make use of mobile agents.

2. The M&M Approach
In the M&M project at the University of Coimbra, we are working on an approach to overcome some of the
problems previously identified. We are developing flexible lightweight JavaBeans software components that when
incorporated into an application gives it the capability of sending and receiving agents. The application is
developed using industry OO development best-practices and can additionally become agent-enabled by the simple
drag-and-drop of mobility components. In our approach, the emphasis is put on the development of applications,
not on the agents. Each agent arrives and departs from the application that it is specific. The application knows the
interface of the agents and the agents know how to interact with the applications (Figure 1).

Mobility
Component

Application

Mobility
Component

Application

Figure 1 – Applications become agent-enabled by using mobility components.

From the programmer’s perspective, all he has to do is to use the mobility components and write the agents.
The agents arrive and departure directly from the application without the needing a fully blown agent platform.
From the user point of view, he just sees an ordinary application. The usage of mobile agents is completely
shielded from him. This is a step forward over the traditional development approaches used in the platform-based
MA systems. Because in this approach there is no mobile-agent platform and because the emphasis is put on the
application and not on the agents, we call this approach ACMAS – Application-Centric Mobile Agent System.

M&M is being implemented using the JavaBeans component model. Nevertheless, we have also decided to
support the ActiveX component model, that is based on Microsoft’s COM [2]. We have taken this decision
because of the wide adoption of this component model in the software industry and in research. We believe that by
supporting ActiveX, a much wider usage base and a much richer set of environments where to use our framework
will be available. Another important point is that any language that has the necessary mechanisms to make use of
COM and ActiveX is able to use the mobility components. At the present, most of the languages that available for
the Windows [3] operating system have that capability. By supporting ActiveX, we are no longer limited to
develop the applications in Java. We can program the applications in languages like Visual C++, Visual Basic and
Delphi. This happens without having to implement any special layers between our components and the target
languages. During our experiments, we developed a simple instant messaging application in Visual C++, Visual
Basic and Java. The agents migrated and executed in all the client applications independently of the language in
which they were written.

At this stage of the project, we already have a rich component palette that in a modular way supports many of
the features found in traditionally MA platforms. We have components for mobility support, inter-agent
communication, security, agent tracking and infrastructure management. We are currently expanding the
component palette into two different application domains: accessing information systems in disconnected
computing environments [4] and network management. Our vision is to build an extensive framework where the
programmer combines components available off-the-shelf from third-party software producers, components for
supporting mobile agents, and components designed specifically for the application domains being considered.

3. Conclusion
We believe that the factors that are preventing a wide adoption of the mobile agent paradigm are not only related to
the technological problems that still exist, but to the great overhead that its usage imposes on the programmers and
users. When weighting the benefits obtained from using mobile agents against the implications of having them in
terms of software development and utilization, the programmers and users choose not to use them.

In the M&M project, we are trying to overcome the limitations identified on the traditional platform-based
model by using binary software components. The idea is not to use traditional mobile agent platforms but to embed
sufficient support for mobility inside of the applications.

References
[1] The Future of Software Agents, Volume 1, Number 4, IEEE Internet Computing,

available at http://computer.org/internet/v1n4/round.htm, 1997.
[2] D. Rogerson, Inside COM, Microsoft Press, 1996.
[3] “Microsoft Windows Products Homepage,” http://www.microsoft.com/windows/default.asp.
[4] P. Marques, L. Silva, J. Silva, A Flexible Mobile-Agent Framework for Accessing Information Systems in

Disconnected Computing Environments, to be presented at the Third International Workshop on
Mobility in Databases and Distributed Systems (MDDS’2000), Greenwich, London, September 2000.

xmile: An Incremental Code Mobility System based on

XML Technologies

Cecilia Mascolo, Wolfgang Emmerich, and Anthony Finkelstein

Dept. of Computer Science University College London

Gower Street, London WC1E 6BT, UK

fC.Mascolo|W.Emmerich|A.Finkelsteing@cs.ucl.ac.uk

Logical mobility ranges from simple data mobility, where information is transferred, through code mobility allows
the migration of executable code, to mobile agents, in which code and data move together. Several application domains
need a more
exible approach to code mobility than can be achieved with Java and with mobile agents in general.
This
exibility can either be required as a result of low network bandwidth, scarce resources, and slow or expensive
connectivity, like in mobile computing settings, or scalability requirements like in applications on several thousand
clients that have to be kept in sync and be updated with new code fragments.

We show how to achieve more �ne-grained mobility than in the approaches using mobile agents and Java class
loading. We demonstrate that the unit of mobility can be decomposed from an agent or class level, if necessary,
down to the level of individual statements. We can then support incremental insertion or substitution of, possibly
small, code fragments and open new application areas for code mobility such as management of applications on mobile
thin clients, for example wireless connected PDAs or mobile phones, or more in general distributed code update and
management.

This work builds on the formal foundation for �ne-grained code mobility that was established in [3]. That paper
develops a theoretical model for �ne-grained mobility at the level of single statements or variables and argues that the
potential of code mobility is submerged by the capability of the most commonly used language for code mobility, i.e.,
Java. We focus on an implementation of �ne-grained mobility using standardized and widely available technology.

It has been identi�ed that mobile code is a design concept, independent of technology and can be embodied in
various ways in di�erent technologies. The eXtensible Markup Language (XML) [1] can be exploited to achieve code
mobility at a very �ne-grained level. XML has not been designed for code mobility, however it happens to have
some interesting characteristics, mainly related to
exibility, that allow its use for code migration. In particular, we
will exploit the tree structure of XML documents and then use XML related technologies, such as XPath and the
Document Object Model (DOM) to modify programs dynamically. The availability of this technology considerably
simpli�es the construction of application-speci�c languages and their interpreters.

XML provides a
exible approach to describe data structures. We now show that XML can also be used to describe
code. XML DTDs (i.e., Data Type De�nition) are, in fact, very similar to attribute grammars. Each element of an
XML DTD corresponds to a production of a grammar. The contents of the element de�ne the right-hand side of the
production. Contents can be declared as enumerations of further elements, element sequences or element alternatives.
These give the same expressive power to DTDs as BNFs have for context free grammars. The markup tags, as well
as the PCDATA that is included in unre�ned DTD elements, de�ne terminal symbols. Elements of XML DTDs can
be attributed. These attributes can be used to store the value of identi�ers, constants or static semantic information,
such as symbol tables and static types. Thus, XML DTDs can be used to de�ne the abstract syntax of programming
languages. We refer to documents that are instances of such DTDs as XML programs. XML programs can be
interpreted and in interpreters can be constructed using XML technologies. When XML programs are sent from one
host to another we e�ectively achieve code mobility.

Unlike Java programs, which are sent in a compiled form, XML programs are transferred as source code and then
interpreted on a remote host. Unlike Java, XML does not con�ne us to sending coarse-grained units of code; XML
documents do not need to begin with the root of the DTD, they can also start with other symbols of the grammar.
This enables us to specify sub-programs and even individual statements. We refer to such code fragments as XML
program increments. Hence, we can specify complete programs as well as arbitrarily �ne-grained increments in XML.
Figure 1 shows how we ship XML programs (every transport protocol can be used). It is possible to specify where to

1

XML

document

HOST1 HOST2

INTERPRETER

DTD

Figure 1: XML Program Migration to Remote Interpreter.

insert/substitute the code increment into the program through the use of XPath for addressing nodes of the tree model
de�ned by the DOM on the XML program. Figure 2 shows the migration of the code increment and the addressing
of the insertion point with XPath.

HOST1 HOST2

INTERPRETER

DTDdocument
XML

Increment

XML

directions
XPath

Figure 2: Increment Migration to Robot Site.

The model on which xmile is based is presented in [2]. We are currently enriching the model and implementing a
prototype. We introduced the ability to dynamically bind data and code; single variables as well as single lines of XML
code can be moved and patched dynamically into a program, while the xmile system provides dynamic binding. XML
tags for pro-active mobility have been added to the prototype to allow the mobility of lines from the XML programs
themselves.

The xmile system also allows the update of the Java classes used by the XML interpreter (see Figure 1), in order
to modify the interpretation of the XML code.

We are now working on mobile computing applications, in particular we used the Symbian EPOC RE5 emulator
to run the prototype and we are currently evaluating the performance of xmile in this setting. Java cards and PDAs
are also in the list of devices that we consider for possible application of the approach.

Furthermore work on no-stop (no-reboot) applications can take advantage of xmile as it is possible to exploit the
tree structure to constrain the program execution temporarily to branches of the program while updating other parts
(with no need of shutting down the application).

We are now investigating the use of XML schemas in order to allow the modi�cation of the language that for the
time being is constrained by the de�nition of the DTDs. Schemas allow much more
exible treatment of the domain
speci�c languages de�ned and introduce yet another interesting potential evolution of the xmile approach.

References

[1] T. Bray, J. Paoli, and C. M. Sperberg-McQueen. Extensible Markup Language. Recommendation
http://www.w3.org/TR/1998/REC-xml-19980210, World Wide Web Consortium, March 1998.

[2] W. Emmerich, C. Mascolo, and A. Finkelstein. Implementing Incremental Code Migration with XML. In M. Jazayeri and
A. Wolf, editors, Proc. 22nd Int. Conf. on Software Engineering (ICSE2000), pages 397{406, Limerick, Ireland, June 2000.
ACM Press.

[3] C. Mascolo, G.P. Picco, and G.-C. Roman. A Fine-Grained Model for Code Mobility . In O. Nierstrasz and M. Lemoine,
editors, Proc. 7th European Software Eng. Conf. (ESEC/FSE 99), Toulouse, France, volume 1687 of LNCS, pages 39{56.
Springer, 1999.

2

Mobile Agent Platform for Mobile Devices

Patrik Mihailescu, Elizabeth A. Kendall and Yuliang Zheng

Peninsula School of Network Computing
Monash University, McMahons Road, Frankston, VIC 3199, Australia

patrik77@bigpond.comfkendall,yuliang.zhengg@infotech.monash.edu.au

1 Extended Abstract

Up until now, mobile agent platforms (e.g. Aglets, Mole, Concordia, etc) have been
con�ned to operate within high-end desktop environments such as Windows, Unix and
Solaris. This poster paper presents work in progress in the development of a mobile
agent platform for small mobile devices such as cell phones, pagers, home appliances
and personal digital assistants (PDA). These devices are becoming more and more
popular with users due to their small size and their ability to be used while the user is
on go. We believe that these devices will bene�t greatly from the use of mobile agent
technology. Typically these devices are connected via a wireless network. Wireless
networks, compared to wireline networks su�er from lower bandwidth, have a greater
tendency for network errors and have a higher cost of network connectivity. Mobile
agents will not only help to overcome these network limitations, but they will also
help to enhance the level of functionality o�ered by applications on these devices.
For instance, applications will become more independent and able to operate without
constant user input. Applications may evolve during their lifetime, i.e. agent locates
additional application component and installs them.

We are in the process of developing a mobile agent platform for mobile devices
using the Connected Limited Device Con�guration (CLDC) speci�cations, which is
part of the Java 2 Micro Edition (J2ME). The CLDC speci�cation is aimed for de-
vices, which contain around 160KB to 512KB of memory and operate with either a
16 or 32 bit RISC/CISC microprocessor. Devices such as cell phones, pagers, personal
organizers and point of sales devices fall into the CLDC speci�cation. There are nu-
merous di�erences between the J2ME and the Java 2 Standard Edition (J2SE)1. One
of the strengths of the J2ME is its
exible architecture, which allows it to operate
on a large number of technically diverse devices. This is achieved through the use of
pro�les, which allows a particular family of devices (cell phones) to de�ne common
functionality required by the underlying Virtual Machine (VM). Therefore di�erent
groups of devices (even toasters) may de�ne di�erent pro�les containing functionality
that is only appropriate for a particular group of devices.

The CLDC speci�cation also utilizes a new VM called the KVM (Kilo Virtual
Machine). This has been designed to operate with as little as 128k memory, which
includes the Virtual Machine (VM), the class libraries and heap memory for executing

1 The whitepaper located at http://java.sun.com/products/cldc/wp/KVMwp.pdf covers
these di�erences

applications. We have decided to embed our agent platform directly into the KVM,
as opposed to de�ning additional Java classes (on top of the exiting KVM classes),
which will need to be resolved by the KVM when called. Our approach is in contrast
to the approach taken by existing mobile agent platforms. The advantages for us are
signi�cant, as our classes will be loaded directly into memory when the KVM loads
for the �rst time. Therefore any access to our classes will be substantially quicker as
they will no longer need to be interpreted; they are already in native C code. This
saving is crucial as the majority of our intended devices operate with relatively low
memory/processing/power and any additional translation of Java classes to native
methods will cause notable performance problems. To embed our classes within the
KVM, we had to rebuild the KVM. We used the romizing approach, by performing all
the linking and resolving of our classes using a program known as the JavaCodeCom-
pact. This program will accept as input all our Java classes and after its execution
will produce a C representation of every single one of our Java classes. This is used in
conjunction with the original KVM C source code and compiled/linked to produce a
mobile agent enabled KVM.

The makeup of our agent platform contains several common features located in
existing mobile agent platforms, e.g. mobile agents, messaging, events, etc. However
there are also signi�cant di�erences, as we have aimed to provide speci�c functionality
for the intended devices that use our KVM. This functionality falls into four main
areas: XML, security, networking and agent tracking. The majority of our classes
are written in Java and then translated to C using the JavaCodeCompact program.
However we have been forced to write several native methods in particular for our
security routines, as the KVM does not provide any Java security classes or any Java
math classes. The XML support we are providing is a SAX based non-validating parser,
which can be used to interpret XML based messages. As not all devices will have a
TCP/IP stack installed, we are providing support for a variety of protocols for all
network functions (messages, sending/receiving of agents) such as the IrDA protocol,
Bluetooth, Serial and TCP/IP. As the KVM does not provide any security, we are
implementing a security scheme based on public key techniques called Signcryption.
Finally we are providing support for tracking of agents, with particular emphasis on
making sure agents can return safely back to their original location.

At the moment, we are �nalizing our Java classes, making sure they match our
functional speci�cations. The next stage of our work will be the development of several
agent-based applications, which will help to evaluate and identify both strengths and
weaknesses in our architecture. Our agent platform is being tested on a variety of Palm
device (Palm Vx, Palm IIIx, Palm IIIc)2, but once Motorola release their KVM for cell
phones we will also be including these devices in both our testing and development.
Further information regarding our development work can be located at the following
web site http://www.pscit.monash.edu.au/~patrikm/.

2 Currently the KVM only runs on Palm devices

Simulating Mobile Agent Based Network Management using
Network Simulator

Otto Wittner, Bjarne E. Helvik

{ottow, bjarne}@item.ntnu.no

Department of telematics
Norwegian University of Science and Technology
7491 Trondheim
Norway
http://www.item.ntnu.no/˜ottow

Abstract

Large, heterogeneous computer and telecommunication networks with ever changing topology and size
are typical environments todays network management (NM) systems struggle to control. Unexpected events
occur frequently in these complex networks, and many of the events result in failure situations where the
NM system is required to intervene and restabilize the network. By distributing the NM system throughout
the network efficiency and dependability can be improved. This is indeed what todays NM system providers
and operators are focusing on. Efforts are currently being made to increase the level of distribution of the
most popular management architectures in use today (SNMP, OSI, TMN).

3

7

2

6

1

5

9

0

4

8

Mean time standard ant
Mean time test ant
Optimal time

Y x 10−3

3X x 10

0.0000

50.0000

100.0000

150.0000

200.0000

250.0000

300.0000

350.0000

400.0000

450.0000

0.0000 0.2000 0.4000 0.6000 0.8000 1.0000

(new batch of ants
initiated every 5 sec.)

traversal time over

batch of 20 ants
20 batches, each

Simulation time

Mean network

(a) (b)

Figure 1: (a) Surveillance ants traversing a network in active network packets. The illustration is a screen
dump from Network Animator, an animation tool included in the Network Simulator suit. (b) Preliminary
results showing how the ants learn to traverse the network by “smelling” each others pheromone tracks.
Standard ants move stochastically while test ants always choose the most desirable next hop. The lower
line is the optimal traversal time for visiting all nodes and returning home.

Swarm intelligence (i.e. simple mobile software agents with collective behavior) is an alternative con-
cept for implementing distributed applications. Several promising examples of NM applications based on
swarm intelligence are under development [1, 5, 4]. For most of these examples a simulator has been used
as the major tool to configure system parameters and verify system performance.

This paper describes how Network Simulator (NS) has been extended to support simulation of mobile
code, and how a network node surveillance system based on swarm intelligence is being developed using
NS.

NS is an open source simulator package. Development efforts are currently funded by DARPA through
the VINT project [2]. NS is capable of running realistic simulation scenarios of traffic patterns in IP-based
networks. The package is implemented as a neat mix of OTcl and C++ classes.

Simulations involving mobile code can not easily be run using the standard NS package. An extension
is required to include the necessary features.

DARPAs Active Network (AN) architecture enables mobile code in network environments. AN packets
and AN enabled network nodes are very similar to mobile agents and mobile agent systems respectively. AN
packets can only contains small units of software. This fits nicely with the concept of swarm intelligence (a
large number of small and simple agents).

The PANAMA project (TASC and the University of Massachusetts) has developed an AN extension to
NS. In the original extension AN packets do not contain any executable code. A reduction in packet size is
used to simulate execution of a packet. To enable simulation of swarm based applications we have enhanced
the AN extension to handle mobile code by allowing a reference to an OTcl object be inserted as packet
data in an AN packet. AN enabled nodes has been extended to initiate a “bring back to life” method (called
run()) in such referenced objects.

Using the AN enabled NS we have started developing and testing a network surveillance system . The
system is inspired by how ants performed foraging and is based on work done by Dorigo et al on ant colony
optimization (ACO) [3]. The goal of an ant in our system is to visit all nodes in the network and return
to its home node, the quicker the better, i.e. the traveling salesman problem (TSP). Dorigo has developed
an efficient ACO-algorithm, Ant Colony System, for solving TSPs but the algorithm requires global access
to all nodes which is impossible in a real network. Our system relies only on local information. Figure 1
shows some preliminary results. Our ants do indeed learn more efficient traversal itineraries over time but
they struggle to find the optimal itinerary.

More work is required to tune the surveillance system. A genetic algorithm is currently being applied
for parameter tuning.

Work is also in progress on testing the performance of the surveillance system in a more realistic en-
vironment where several other traffic sources generate traffic in the network . NS provides a collection of
traffic sources which can easily be added to a simulation setup.

Work has just been initiate on a backup-path reservation system based on swarm intelligence. Ants
allocate resources to form backup paths for end-to-end connections. Multiprotocol Labeled Switching
(MPLS) is chosen as the underlying routing mechanism. NS provides support for MPLS simulation.

Our first experiences with Networks Simulator as a simulation tool for swarm intelligence based ap-
plication are promising. Speed of simulation is reasonable if care is taken when deciding which objects
to implement in OTcl and C++. NS provides functionality for convenient creation of realistic simulation
environments.

References

[1] Gianni Di Caro and Marco Dorigo. AntNet: Distributed Stigmergetic Control for Communications
Networks. Journal of Artificial Intelligence Research, 9:317–365, Dec 1998.

[2] DARPA: VINT project. UCB/LBNL/VINT Network Simulator - ns (version 2).
http://www.isi.edu/nsnam/ns/.

[3] Marco Dorigo and Gianni Di Caro. Ant Algorithms for Discrete Optimization. Artificial Life, 5(3):137–
172, 1999.

[4] Navarro Varela G. and M.C. Sinclair. Ant Colony Optimisation for Virtual-Wavelength-Path Routing
and Wavelength Allocation. In Proceedings of the Congress on Evolutionary Computation (CEC’99),
Washington DC, USA, July 1999.

[5] T. White A. Bieszczad B. Pagurek. Distributed Fault Location in Networks Using Mobile Agents. In
Proceedings of the 3rd International Workshop on Agents in Telecommunication Applications IATA’98,
Paris, France, July 1998.

	ASA/MA 2000 Poster Abstracts
	M. Allen, G. Staniford, A. Taleb-Bendiab
	Mobile Agent: Enriching Document Management and Distribution for Mobile Design Work
	Abstract and Structure
	Background
	Argumentation-based system
	Why Mobility?
	Future Work

	I. Alouini, P. Van Roy
	Faul-Tolerant Mobile Agents in Mozart
	Introduction
	The global store abstraction
	Mobile agents using the global store abstraction
	Mobile agent API
	Conclusion
	References

	T. Araragi
	A Knowledge-based Internet Agent System with a Formal Vefification Facility
	Overview
	Programming of Erdös
	Verification of Erdös
	Programming Environment of Erdös
	References

	F. Baumgartner, T. Braun
	Active Networking, QoS and Virtual Routers
	Introduction
	Mobile Agents and Service Mapping
	Concept Evaluation by Virtual Active Routers
	References

	P. Braun, C. Erfurth, W. Rossak
	Experiences with State-of-the-Art Migration Strategies
	Introduction
	Experimental Results
	Conclusions
	References

	B. Dillenseger
	MobiliTools: A Toolbox for Agent Mobility and Interoperability Based On OMG Standards
	Introduction to MobiliTools
	SMI, Simple MASIF Implementation
	ACTS, Agent Communication Transport Service
	On-going work
	Availability
	Acknowledgements

	M. Günter, T. Braun
	Internet Service Delivery Control with Mobile Agents
	Introduction
	Mobility and Service Delivery Control
	A Supporting Infrastructure for Service Delivery Control Agents
	Examples of Customer Controlled IP Services

	G. Kimovski, D. Davcev, V. Traikovic
	Agent – based Virtual Laboratory
	Introduction
	Virtual Laboratory Model
	Implementation
	References

	P. Marques, L. Silva, J. Silva
	Application Centric Mobile Agent Systems: Bringing the Focus Back to the Application
	Introduction and Motivation
	The Programmer
	The User

	The M&M Approach
	Conclusion
	References

	C. Mascolo, W. Emmerich, W. Finkelstein
	XMILE: An Incremental Code Mobility System based on XML Technologies
	References

	P. Mihailescu, E. Kendall, Y. Zheng
	Mobile Agent Platform for Mobile Devices
	Extended Abstract

	O. Wittner, B. Helvik
	Simulating Mobile Agent Based Network Management using Network Simulator
	Abstract
	References

