
Diss. ETH No. 17479

Interactive Learning Environments
for Mathematical Topics

A dissertation submitted to

ETH ZURICH

for the degree of

Doctor of Sciences

presented by

Ruedi Arnold
Dipl. Informatik-Ing. ETH

born June 23, 1976
citizen of Bürglen UR

accepted on the recommendation of

Prof. Dr. Friedemann Mattern, examiner
Prof. Dr. Werner Hartmann, co-examiner

Prof. Dr. Carl August Zehnder, co-examiner

2007

ii

Abstract

In the information society an efficient and effective use of computers
and their capabilities play a central role. An understanding of im-
portant computer science concepts should therefore be part of general
education today. But concepts of computer science are often abstract
and thus inherently difficult to understand and teach. Fortunately, it
is precisely the computer itself that, due to dynamic visualizations, in-
teractive simulations, and immediate feedback, allows an easier access
to abstract topics.

As part of this dissertation the system “ InfoTraffic” was developed
which contains three new interactive learning environments targeted
at propositional logic, queuing theory, and dynamic systems. The
three programs are embedded into the common scenario of “traffic con-
trol” and consistently use a virtual-enactive and everyday-life-based
approach to introduce abstract topics in education. InfoTraffic thus
contributes among other things to an increase of the significance of
logic in general education.

InfoTraffic was developed according to engineering science methods
including insights from teaching practice and educational science. The
experience gained lead to pragmatic recommendations for the develop-
ment of interactive learning environments. Along with teaching mate-
rials the system is freely available online and it is already in use in high
schools, universities, and teacher education.

iv Abstract

Kurzfassung

In der Informationsgesellschaft kommt der effizienten und effektiven
Nutzung des Computers und seiner Möglichkeiten eine zentrale Rolle
zu. Ein Verständnis für wichtige informatische Konzepte gehört deshalb
heute zur Allgemeinbildung. Informatische Konzepte sind allerdings oft
abstrakt und daher inhärent schwierig zu verstehen und zu unterrich-
ten. Es ist aber gerade der Computer selbst, der dank dynamischen
Visualisierungen, interaktiven Simulationen und unmittelbaren Rück-
meldungen einen leichteren Zugang zu abstrakten Themen ermöglicht.

Das im Rahmen dieser Dissertation entwickelte System “ InfoTraffic”
umfasst drei originäre interaktive Lernumgebungen zu Aussagenlogik,
Warteschlangentheorie und dynamischen Systemen. Die drei Program-
me sind eingebettet in das gemeinsame Szenario “Verkehrssteuerung”
und nutzen konsequent einen virtuell-enaktiven, das heisst handlungs-
orientierten, und alltagsbezogenen Ansatz zur Einführung abstrakter
Themen im Unterricht. InfoTraffic leistet damit unter anderem einen
Beitrag zur Erhöhung des Stellenwerts von Logik in der Allgemeinbil-
dung.

InfoTraffic wurde nach ingenieurswissenschaftlichen Methoden unter
Einbezug von Erkenntnissen aus der Schulpraxis und der Lehr- und
Lernforschung entwickelt. Die gemachten Erfahrungen führen zu prag-
matischen Empfehlungen zur Entwicklung von interaktiven Lernum-
gebungen. Das System ist samt Unterrichtsmaterialien online frei ver-
fügbar und wird bereits an Gymnasien und Hochschulen sowie in der
Lehrerausbildung eingesetzt.

vi Kurzfassung

Acknowledgements

Many people contributed to this work. My first and main thank belongs
of course to Prof. Dr. Werner Hartmann – InfoTraffic and this disserta-
tion would not exist without him. I was happy when I could join his
group for teacher education and computer science at ETH Zurich, I felt
sad when he left the department due to unfortunate circumstances, and
since then I even more appreciated his continuous premium support of
my PhD project. Werni, I am deeply grateful for all the e-mails, meet-
ings, conversations, proof-readings, idea-sharing, visions, advice, and
everything else! Thanks for letting me learn a lot from you – you sim-
ply are a great guy.

I am also indebted to Prof. Dr. Friedemann Mattern for having me in
his research group for distributed systems. Thank you very much for
all the support and assistance during the past two and a half years.

A big thanks goes to Prof. Dr. Carl August Zehnder for accepting to
be co-examiner of my dissertation.

Thanks to the members of the distributed systems group for all the
support and good times. I especially thank “my” post-doc Dr. Marc
Langheinrich for proof-reading my PhD thesis as well as all the valuable
hints, remarks and discussions over the years.

I am very thankful to all other proof-readers of this document, es-
pecially to Hans Fischer for (linguistically) reviewing the whole docu-
ment and to Michela Pedroni and Christof Roduner for carefully proof-
reading selected chapters.

I am grateful to all the students contributing to InfoTraffic, especially
to the two master students Anna-Nina Simonetto and Nicolas Born,
and also to the semester thesis students Anna-Nina Simonetto, Hasan
Karahan, Marc Bühler, and Xiaoping Yin.

After a little more that five years at ETH Zurich, three professors
and accordingly as many research groups, and about ten offices, I am
finally done with the Swiss Federal Institute of Technology Zurich. I
leave it with both a smiling and a crying eye. With the following list
of friends and mates I met during my time here at ETH I would like

viii Acknowledgements

to express my gratefulness for having shared time and thoughts with
me. Sorry for those I forgot, just contact me and I will add your name
manually to your personal copy. – Is this ok with you?

Here we go: Thanks to “Das” Keno aka Dr. Albrecht for being a
great first office mate and good friend through all these years. As
one of the last free-living individuals of your species, you almost made
spam have-been and were a great indoor climbing mate. Best wishes for
Lisa’s and your new collaborative project “Emma”. Thanks to Judith
Zimmermann for the friendship and the many fascinating discussions
through all these times at ETH – good luck for your further career
at this institution. Thanks to Hermann “Aquila Chrysaetos” Lehner,
my time-wise best-organized diploma student ever, for all the coffee
conversations about life, people, politics, tech-stuff, fun and everything
else that matters. Thanks to Marc Langheinrich, Judith Zimmermann,
and Eva Schuberth for co-leading the forum for women in computer
science with me, the friendship, and all the experience I could gain
in this position together with you. I further appreciated very much all
the coffee break discussions and e-mails with Dr. Floris Tschurr – thank
you very much Floris for all the insights into life, organizations, and
humans and their behavior you offered me.

Additional thank for support, feedback, hints, and whatever else goes
in alphabetical order to: Christian Sigg, Diana Jurjevic, Prof. Dr. Jürg
Nievergelt, Lea Simonetto, Dr. Markus Brändle, Matthias Dreier, Mi-
chela Pedroni, Myke Näf, Nando Stöcklin, Nina Huggenberger, Dr. Rai-
mond Reichert, Samuel Zürcher, and Prof. Dr. Stefan Wolf. Further
I am grateful for all the feedback I received at the two international
doctoral consortia in Paderborn and Zurich as well as at the ACM
SIGCSE doctoral consortium in Covington. Many thanks as well for
all the valuable feedback of teachers and students using InfoTraffic.

My final thank goes on the one hand to my parents and my family
for making it possible for me to enter ETH Zurich and the academic
world in the first place. On the other hand I thank my friends for
sharing time with me, cheering me up, and distracting me from time
to time (especially on weekends and holidays) with (outdoor) action,
fascinating conversations, fun, going out, traveling, music, and so on...
– you know who you are!

Zurich, November 2007

rarnold@wherever.ch

Contents

Abstract iii

Kurzfassung v

1 Introduction and Contributions 1
1.1 ICT and Education . 2
1.2 Motivation and Goals 3
1.3 The InfoTraffic Interactive Learning Environments . . . 4
1.4 Contributions of this Thesis 6
1.5 Outline . 8

2 Didactic Concepts for Interactive Learning Environments 11
2.1 Addressing Fundamental Ideas 11
2.2 Abstract Topics and Real-World Examples 14
2.3 Extending the Rule-e.g.-Rule Technique 16
2.4 Different Representations 17
2.5 Providing Interactivity and Immediate Feedback 19
2.6 Automatic Update of Corresponding Views 20
2.7 Conclusions . 22

3 LogicTraffic: Safe Intersections and Propositional Logic 25
3.1 The Importance of Logic 25
3.2 Logic in General Education 26
3.3 The Program LogicTraffic 28
3.4 Learning Goals and Use of LogicTraffic 32
3.5 Related Work . 35
3.6 Conclusions . 39

4 QueueTraffic: Traffic Jam and Queuing Theory 41
4.1 The Importance of Waiting Queues 41
4.2 Queuing Theory and Simulation 42
4.3 The Program QueueTraffic 43
4.4 Learning Goals and Use of QueueTraffic 45

x Contents

4.5 Related Work . 46
4.6 Conclusions . 49

5 DynaTraffic: Markov Chains and Analysis of Dynamic
Systems 51
5.1 The Importance of Markov Chains 51
5.2 Markov Chains and Linear Algebra 52
5.3 The Program DynaTraffic 53
5.4 Learning Goals and Use of DynaTraffic 55
5.5 Related Work . 57
5.6 Conclusions . 60

6 On the Development of Interactive Learning Environ-
ments 61
6.1 Media in Education: Expectations and Disappointments 61
6.2 Computer Aided Instruction 64
6.3 Innovation vs. Evaluation 65
6.4 An Interdisciplinary Engineering-Science Approach . . . 66
6.5 Pragmatic Recommendations 67
6.6 Conclusions . 72

7 Evaluation, Use and Experience 73
7.1 On the Difficulty of Scientific Evaluation of

Interactive Learning Environments 74
7.2 Approaches to Educational Research 75
7.3 The Approach of InfoTraffic 77
7.4 InfoTraffic: Uses and Feedback 78
7.5 Conclusions . 81

8 Results and Outlook 83

A Uses and Presentations of InfoTraffic 85

B System Design and Implementation Issues 87
B.1 Acknowledgements . 87
B.2 Overall System Architecture 88
B.3 Selected Algorithms . 90
B.4 Data Formats . 92
B.5 Used Libraries . 96

Bibliography 97

1 Introduction and Contributions

Over the last decades, computers and their communication capabilities
have become increasingly important in our lives. Most people in de-
veloped countries have access to the Internet and use its services such
as e-mail and web search almost daily. Even children use computers
not just for playing, but also to write and print texts, to store, modify
and share digital photographs, or to download music and organize a
personal music collection. These activities mostly do not require an
explicit knowledge of the underlying abstract concepts such as analog
vs. digital, hierarchical organization, volatile vs. persistent memory,
logical operators, divide-and-conquer, or synchronous vs. asynchronous
communication, to name some. But in order to make use of the full
potential, a deeper and explicit understanding of the underlying mathe-
matical and computer science concepts is required. Everybody should
therefore have a certain comprehension of these concepts. It is thus be-
neficial to include computer science education in general education and
teach topics such as programming as a formal notation of algorithms,
databases as a systematic and efficient way to organize information, or
logic as the foundation of rational thinking and argumentation.

Most topics in computer science are abstract however, and thus in
general difficult to understand. Fortunately, computers and their multi-
modal and communicative capabilities are well suited to support teach-
ing and learning of abstract concepts by offering visualizations, inter-
active simulations, and immediate feedback.

We contribute educational software that makes use of these capabili-
ties. This thesis presents InfoTraffic, a collection of three novel interac-
tive learning environments targeted at introductory teaching of propo-
sitional logic, queuing theory, and Markov chains, respectively. These
three teaching tools make use of real-world-based and virtual-enactive
approaches to teaching abstract topics as they share the common sce-
nario of traffic control and offer different interactive representations.

In this introductory chapter we briefly discuss the roles of computers
in education. We summarize the motivation and the goals of our work

2 Chapter 1. Introduction and Contributions

and give a short overview of the InfoTraffic project with its components
LogicTraffic, QueueTraffic, and DynaTraffic. Finally we present the four
main contributions of this thesis in condensed form.

1.1 ICT and Education

In our information society it has become increasingly important to
master information and communication technologies (ICT), which is
largely equivalent to mastering the “use of computers”. Hartmann et
al. [42] observe three different roles of computers in education:

ICT as a Tool: Tools such as word processors, spreadsheets or Inter-
net services are used by most professionals today. In general this
use does not require specific knowledge of computer science such
as programming. Yet for an efficient use they require knowledge
of some of its basic concepts.

ICT as a Medium: Computers and their multimodal and commu-
nicative capabilities can support teaching and learning. Here we
distinguish two main modes: humans either use topic-specific edu-
cational software or they employ computers mainly to communi-
cate with other humans. Well-known examples of the first use,
the human-computer-interaction mode, include vocabulary train-
ing programs or interactive learning environments, e.g., to simu-
late the behavior of a complex ecosystem.
Furthermore, Internet-based communication opportunities offer
anywhere and anytime learning. Common keywords are online
learning, e-learning or blended learning. The focus of existing e-
learning systems typically lies on the second mode, human-human-
interaction, i.e., people discuss questions online or collaboratively
edit texts.

ICT as a Subject: Important concepts of computer science like pro-
gramming, algorithms, logical circuits, databases or networks are
the content of computer science education. There is an ongoing
debate on what concepts should be taught and how and where
they should be taught, including for example arguments about
the best programming language to start with.

As noted in [42], these three roles are generally not kept well apart
of each other in the context of education. One often sloppily talks of

1.2. Motivation and Goals 3

computer science education (CSE) and does not differentiate between
the different roles, which potentially leads to unnecessary confusion
und misconceptions. Therefore we first clarify the relation between our
InfoTraffic system and the three roles of computers in education.

InfoTraffic addresses both ICT as a medium and ICT as a subject. On
the one hand, InfoTraffic makes use of the advantages of the medium
computer by offering interactive simulations and dynamic visualiza-
tions. On the other hand, InfoTraffic deals with important concepts
of computer science and mathematics such as propositional logic or
Markov chains.

1.2 Motivation and Goals

Although logic is of fundamental importance to everybody, we observe
that logic is rarely a topic in today’s curricula of general education, e.g.,
in Swiss or German high schools. As will be elaborated in chapter 3, the
absence of logic education is partly due to the way logic has been taught,
namely in a formal and abstract manner. Starting from this observation
we investigate on how logic should be taught and introduced in general
education. This inquiry leads to the main ideas for LogicTraffic, and we
identify some other important concepts that can be nicely illustrated
within the scenario of traffic control.

It is generally accepted today that teaching is particularly efficient
whenever students can establish a connection between the subject to
learn and their own experiences in everyday life. The key idea behind
InfoTraffic was to facilitate learning by using scenarios from everyday life
experience. We all understand safety at road intersections and realize
that crashes might occur if two intersecting lanes both show green traffic
lights simultaneously. It is also obvious to us that traffic jams occur
if there are too many cars on the street. We understand as well that
we can predict the distribution of cars if we have a simple model of
probabilities for their distribution. InfoTraffic uses these examples to
introduce propositional logic, queuing theory, and Markov chains. With
the presented scenario of traffic control, these three rather abstract
topics can be perfectly accommodated.

Providing interactive software, readily available for teachers, along
with teaching materials (e.g., introductory presentation, problems, and
solutions to the problems), InfoTraffic supports the goal of bringing
logic back to schools and general education. InfoTraffic is available at

4 Chapter 1. Introduction and Contributions

www.swisseduc.ch/compscience/infotraffic/.
As another result of the InfoTraffic project we have gained insights

into how to teach abstract topics, by using our approach with sam-
ple applications based on real-world examples. This approach can be
generalized and used in other areas and for other topics. It leads to
shareable experience in the development of state-of-the-art interactive
learning environments for computer science.

1.3 The InfoTraffic Interactive
Learning Environments

InfoTraffic [2, 4, 5, 7] is a collection of new interactive learning envi-
ronments (ILE). An ILE is interactive educational software with the
purpose to facilitate teaching and support learning by taking advan-
tage of the capabilities of computers such as simulation, visualization
or giving feedback; see for example [29, 35, 69].

The ILEs of InfoTraffic share the common scenario of controlling traf-
fic systems and allow a gentle introduction to the following abstract
topics of computer science and mathematics:

Propositional Logic: The LogicTraffic ILE uses formulas in proposi-
tional logic to describe safe traffic light settings at an intersection.
The control of traffic lights serves as a well-suited example for the
use of propositional logic. Truth tables and formulas receive an
evident everyday-life meaning, and further concepts such as equi-
valence or normal forms of formulas follow naturally. LogicTraffic
is covered in detail in chapter 3.

Figure 1.1: Screenshot of LogicTraffic

www.swisseduc.ch/compscience/infotraffic/

1.3. The InfoTraffic Interactive Learning Environments 5

Queuing Theory: The QueueTraffic ILE is an easy to use yet powerful
tool to simulate and analyze traffic jams at an intersection. Traffic
jam is a well-known phenomenon. Important parameters of queu-
ing theory such as the arrival rate of cars or the duration of green
traffic lights for individual lanes can easily be modified. Through
simulation QueueTraffic allows a visual impression of what is going
on and an in-depth analysis by providing relevant information like
the current utilization of a lane or the number of cars waiting in
the system. QueueTraffic is outlined in chapter 4.

Figure 1.2: Screenshot of QueueTraffic

Markov Chains: The DynaTraffic ILE uses Markov chains to model
the distribution of traffic in a system with several intersections,
predicting the number of cars on certain streets. Important pa-
rameters such as the transition probabilities and the state vector
can easily be modified. Through different but corresponding views,
the program allows a step-wise analysis of the behavior of the un-
derlying Markov model. Chapter 5 is dedicated to DynaTraffic.

Figure 1.3: Screenshot of DynaTraffic

6 Chapter 1. Introduction and Contributions

As stated above, all three ILEs are about control of traffic. They differ
in the view (local vs. global) and the time (static vs. dynamic) of their
observations of traffic systems, as illustrated in figure 1.4. LogicTraffic
is concerned with the static case at a single intersection, i.e., snapshots
in a local view. This naturally leads to the question: Which traffic light
settings are safe? QueueTraffic analyzes the dynamic case at a single
intersection, i.e., an observation over time in a local view, leading to
the question: Do waiting queues occur? DynaTraffic finally is about
the dynamic distribution of traffic in situations with more than one
intersection, i.e., an observation over time in a global view: How many
cars are there on the streets at a given instant in time?

globallocal
View

Time

dynamic

static

QueueTraffic

DynaTraffic

LogicTraffic

Figure 1.4: InfoTraffic with respect to local vs. global and static vs. dynamic view

The three ILEs of InfoTraffic can be used in class independently of
each other, whenever they fit into the curriculum. The three programs
do not build up on each other and come with independent ready-made
teaching materials. It is also possible however, to use the common sce-
nario of the three programs as an ongoing example to show important
concepts hidden behind the control of traffic systems and to show the
importance of computer science and mathematics in everyday life.

1.4 Contributions of this Thesis

The motivation for InfoTraffic is on the one hand to develop, provide
and test a collection of new interactive learning environments. On the

1.4. Contributions of this Thesis 7

other hand we seek to gain further insights into how to teach abstract
topics and into how to implement ILEs for such topics.

A Real-World-Based Approach to Abstract Topics

Introducing abstract topics is generally known to be difficult. It is usu-
ally difficult to motivate the topic and to outline practical applications.
Precisely because of this difficulty we recommend to start with real-
world-based examples for introducing abstract topics as one possible
promising way. This idea is not new, but we are among the first to
strictly apply this approach to the design and the implementation of
novel interactive learning environments for propositional logic, queuing
theory and Markov chains.

We support our approach by extending the two well-known and widely
used didactic techniques of rule-eg-rule and advance organizer. Our
extended rule-e.g.-rule technique gradually builds on the students pre-
vious knowledge and experience from everyday life.

Guidelines for Pragmatic and Interdisciplinary Engineering of
Interactive Learning Environments

The design, development and evaluation of interactive learning environ-
ments is a laborious task and it involves knowledge from three different
areas: software engineering, educational science and teaching practice.
Thus an interdisciplinary approach is required. We suggest an engi-
neering science approach: take the best findings from all the three
fields and build computer-based learning environments that are widely
used in practice.

This interdisciplinary approach has proven successful in the past for
several projects developing ILEs for computer science at ETH Zurich.
We have condensed this past experience and our insights from the Info-
Traffic project in ten pragmatic recommendations for the development
of ILEs, as presented in chapter 6.

The complexity of interactive learning environments with its many
variables sets tight boundaries to an evaluation by traditional methods
of educational research. According to Schulmeister [69], putting the
focus unilaterally on such evaluations often leads to artificial learning
environments that are of no relevance to teaching practice. Intention-
ally we did not conduct a large evaluation study but put emphasis on

8 Chapter 1. Introduction and Contributions

the impact in practice. While we also have conducted constant evalua-
tion to improve InfoTraffic, it is primarily based on anecdotic evidence.

A Virtual-Enactive Introduction to Abstract Topics

Introducing and teaching the basics of logic is well known to be difficult
because of the high level of abstraction inherent in logic. LogicTraffic
offers an easy and obvious approach to logic, based on the visual rep-
resentation of logic in an everyday situation (control of traffic intersec-
tions) and the possibility to interactively manipulate logical formulas
and propositions. The concept of virtual-enactive [42] and iconic rep-
resentations [27] is one of the key ideas behind InfoTraffic.

Increasing the Significance of Logic in General Education

A comprehension of logic is fundamental for decision-making, analyz-
ing relationships and any other kind of rational arguing. Today though,
logic has little significance in school practice. Responsible for this shad-
owy existence of logic in curricula is the fact that logic is and has
commonly been taught in an abstract manner and reduced to a ma-
thematical set of formulas. With the ready-made program LogicTraffic
and its accompanying teaching materials we present a new tool for the
introductory teaching of logic in general education. LogicTraffic offers
a feasible and attractive approach to propositional logic. LogicTraffic
thus contributes to a strengthening of computer science and mathema-
tics instruction in general education.

1.5 Outline

The following chapter elaborates on why the three topics covered by
InfoTraffic are fundamental ideas of computer science and on further
important didactic concepts behind the InfoTraffic project. The chap-
ters 3, 4 and 5 present the three new ILEs LogicTraffic, QueueTraffic,
and DynaTraffic. For each of the three ILEs we elaborate on the topic
covered and the targeted learning goals, present the program and dis-
cuss related work. Transferable insight we gained in the process of
developing ILEs is presented in chapter 6. The pragmatic recommen-
dations given in this chapter are based on experience from developing
InfoTraffic as well as on know-how from the tradition of CSE research,
especially in the development of ILEs, at the department of computer

1.5. Outline 9

science at ETH Zurich [21, 61, 77]. Chapter 7 reports on our evalua-
tion of InfoTraffic in the context of different approaches to educational
research. A final summary and conclusions are presented in chapter 8.

10 Chapter 1. Introduction and Contributions

2 Didactic Concepts for
Interactive Learning
Environments

Interactive learning environments have the purpose to facilitate teach-
ing and support learning by taking advantage of the capabilities of
computers. When designing such educational software, a number of
important issues have to be addressed. Identifying and settling these
issues make the development of high-quality interactive learning envi-
ronments in computer science a demanding task. A first crucial issue is
the topic covered by the learning environment. Additional important
issues to be addressed are suitable examples and a sensible incorpora-
tion into instruction. Furthermore a learning environment should not
be restricted to mere animation, but it has to stimulate learners to
investigate the topic by offering a high level of interactivity. In this
chapter we point out the main didactic issues to be addressed when
developing interactive learning environments and illustrate them with
the example of InfoTraffic.

2.1 Addressing Fundamental Ideas

As with any teaching material, when developing a learning environment
choosing the topics is one of the most relevant decisions to take. The
development of interactive learning environments such as in InfoTraffic
only makes sense and is worth the effort if it covers fundamental topics
that ensure its longevity and widespread usage. Bruner [26] gives vague
definitions of fundamental ideas. Schwill [70] bases on Bruner’s work
and provides four criteria for fundamental ideas of computer science.
Schwill describes a fundamental idea with respect to some domain as a
scheme for thinking, acting, describing, or explaining which

Horizontal Criterion: is manifold applicable or recognizable in different
areas.

12 Chapter 2. Didactic Concepts for Interactive Learning Environments

Vertical Criterion: may be demonstrated and taught on every intel-
lectual level.

Time Criterion: can be clearly observed in the historical development
and is relevant in the long term.

Sense Criterion: is related to everyday language and thinking.

The consideration of these criteria of fundamental ideas stimulates
the selection of content which is relevant, long-lived, and cognitively
demanding (e.g., according to the taxonomy of Bloom [17]). The topics
for the InfoTraffic learning environments – propositional logic, queuing
theory and Markov chains – are fundamental topics in computer science,
as we will show below.

Note that Hartmann et al. [42] add a fifth criterion “representation”
to the four criteria of Schwill [70]. Since section 2.4 in this chapter is
dedicated to different representations, we do not take this fifth criterion
into consideration here.

Propositional Logic as a Fundamental Topic

Propositional logic (PL) with concepts such as propositions, operators,
truth tables, formulas and equivalence is of vital importance for any
kind of rationality. If we do not obey the principle of bivalence or do
not follow the concept of logical inference, we are not able to argue
or act rationally. According to the four criteria given above, PL is a
fundamental topic:

Horizontal Criterion: PL has obviously applications in many different
areas, for example computer hardware, queries in online search
engines or logical inference in natural language.

Vertical Criterion: PL can be demonstrated and taught on every in-
tellectual level. Even a child understands that a certain sentence
is either true or false and that sentences can be combined to build
more complex sentences or formulas. Humans automatically learn
the basic concepts of PL. On the other hand, dealing with formu-
las in PL leads quite naturally to more complex questions such as
satisfiability or efficient testing of equivalence.

Time Criterion: A fundamental idea had to have been valid ten years
ago and still has to be relevant in ten years. This is certainly the

2.1. Addressing Fundamental Ideas 13

case for PL, being the fundament of rationality and therefore for
all sciences. There have for example been no mathematical proofs
without the existence of PL.

Sense Criterion: PL is related to everyday language and thinking.
Natural language and formulas in PL share for example constructs
such as “or” and “and”, though sometimes with different semantics,
as pointed out in [4].

Queuing Theory as a Fundamental Topic

The theory of queues with concepts such as arrival rate, Poisson dis-
tribution, or utilization is a mathematical model for describing and
analyzing phenomena happening in our world. According to the four
criteria given above, queuing theory is a fundamental topic.

Horizontal Criterion: Queuing theory has applications in many differ-
ent areas, be it physical-real (e.g., traffic jam or cashier desk in
the supermarket), physical-virtual (e.g., post office with number
system), or digital-virtual (e.g., congestion at a web server or job
queue at a printer).

Vertical Criterion: Queues can be explained to a child, it will un-
derstand that cars have to wait if there are too many of them
on the street. On a higher intellectual level, even the simplest
mathematical models to analyze queues require some mathemati-
cal background.

Time Criterion: Queues continue to be relevant. As long as we need
any kind of capacity planning and as long as humans keep or in-
crease their physical mobility (e.g., cars, planes) and virtual con-
nectivity (e.g., Internet, telephony), queuing theory will remain
important.

Sense Criterion: Queuing theory is related to everyday language and
thinking. We often speak of traffic jams when cars queue on
streets. We speak of systems, e.g., airports or the telephony sys-
tem, being overloaded. Queuing theory is used to optimize pro-
cesses and can directly affect the behavior of people, e.g., when
doing queue analysis and applying personal “fast-track heuristics”
in order to chose the most suitable queue in a supermarket.

14 Chapter 2. Didactic Concepts for Interactive Learning Environments

Dynamic Systems as Fundamental Topics

Our world is one big and very dynamic system. Many subsystems,
such as for example the global stock market or the atmosphere are
often modeled as dynamic systems. Also smaller systems such as a
forest and the population of animals can be seen as dynamic systems
and can be modeled as Markov chains. We demonstrate why concepts
of dynamic systems, and more specifically why Markov chains are a
fundamental topic in mathematics.

Horizontal Criterion: Many real systems are modeled as dynamic sys-
tems. Markov chain models are for example used to forecast our
weather, to predict the development of our stocks, or to prognosti-
cate the development of the number of the population of a certain
country.

Vertical Criterion: Dynamic systems can be demonstrated and taught
on every intellectual level. Children understand simple predator-
prey dependencies such as “if there are many hares, the number of
lynxes increases because they have a lot of hares available for food”,
which are easily modeled with a Markov chain. And of course there
are systems of almost arbitrary size and mathematical complexity.

Time Criterion: Weather, stock market and population predictions
have been of interest for a long time. People will be concerned
about tomorrow’s weather and politicians about the population of
their countries in the future too.

Sense Criterion: Dynamic systems and models are related to every-
day language and thinking. Terms such as mutual dependency or
steady state are often used and most people have at least a vague
understanding of what they mean.

Having defined the topics covered by a learning environment, a next
important issue are examples and applications. Suitable examples and
meaningful applications help support a theory and allow in general the
creation of reasonable assignments.

2.2 Abstract Topics and Real-World Examples

The concepts covered by the InfoTraffic learning environments are ab-
stract. Boolean operators and equivalence of Boolean formulas in Log-

2.2. Abstract Topics and Real-World Examples 15

icTraffic, utilization and arrival rate in QueueTraffic, or steady state and
transition matrix are abstract concepts.

InfoTraffic gives an introduction to abstract concepts with everyday-
life based examples. Anderson et al. [1] state in their article on situated
learning that “numerous experiments show combining abstract instruc-
tion with specific concrete examples is better than either one alone” and
summarize that “abstract instruction combined with concrete examples
can be a powerful method.”

According to the constructivist learning theory [10], the construction
of new knowledge is performed individually, based on previous knowl-
edge. This process of acquiring knowledge is more difficult for abstract
topics because learners lack real world objects or problems to relate
to. Trichina [76] who built a learning environment for Turing machines
states that “cognitively plausible representation is a fundamental prob-
lem to every theory of instruction”. Educational software supporting
the introduction of abstract topics should therefore find and provide
good representations to facilitate the construction of knowledge. As
Trichina [76] puts it: “...one has to develop tools that make students
aware of their own thinking and abstraction process by gradually build-
ing on the students’ previous knowledge and experience.”

For the InfoTraffic learning environments we use the example of traf-
fic control, based on two reasons. First of all, everybody is familiar
with traffic control: everybody knows what happens if two intersecting
lanes show green traffic lights simultaneously and everybody has expe-
rienced traffic jams. Secondly, traffic control illustrates many abstract
concepts. Of course, other everyday-life based examples might serve
for the same purpose too. We do by no means claim that traffic is the
only scenario that works.

Using terms of the anchored instruction [24] learning paradigm, In-
foTraffic uses traffic control as interesting and realistic anchor (macro-
context) for the instruction of abstract concepts of computer science.
Blumstengel [18] states about this anchor: “Er soll Interesse wecken
und Wahrnehmung und Verständnis des Lernenden lenken. Dadurch
wird die Bedeutung des zu erwerbenden Wissens in der Anwendung
herausgestellt.”

Introducing abstract topics such as the ones targeted at by the In-
foTraffic learning environments, educational software might do its best
job. Sound examples help students understand abstract topics in their
own mental structures. Rather than linearly following the trail laid

16 Chapter 2. Didactic Concepts for Interactive Learning Environments

down by an author or a lecturer, students can explore this structure
themselves. Often an understanding of the basic concepts and an in-
tuitive knowledge is sufficient. This kind of approach has been around
for years. We do not teach children the law of gravity by showing them
physical formulas, but simply by showing them the effect of gravity.
We let them discover! It is therefore not surprising that we have used
LogicTraffic as an example for discovery learning [6] in presentations
and workshops.

2.3 Extending the Rule-e.g.-Rule Technique

The sole existence of an attractive learning environment does of course
not improve teaching quality. It is imperative that any such tool is
properly incorporated into the classroom, e.g., by providing correspond-
ing teaching materials. The InfoTraffic learning environments not only
come with a set of accompanying teaching materials [3], but also intro-
duce a novel lecture organization, which we call the e.g.-rule-e.g.-rule
technique. Common lectures are often organized based on the rule-
e.g.-rule technique, see figure 2.1. According to Bligh [16] the first rule
stands for a concise statement, display, and re-expression of the topic.
Bligh describes the e.g.-part (example) as elaboration (detail, illustra-
tion, reasons and explanations, relations, examples) and feedback. The
second rule is then a summary with recapitulation and restatement.

rule rulee.g.

rule rulee.g.e.g.Figure 2.1: The widely used rule-eg-rule technique for teaching

For abstract topics, it is often not suitable to begin with a rule,
i.e., with a concise statement displaying and summarizing the main
concepts in an condensed form. For such cases, we suggest to prefix
the initial overview with an introductory example based on a real-
world experience. Our extended rule-e.g.-rule technique looks thus as
depicted in figure 2.2.

rule rulee.g.

rule rulee.g.e.g.

Figure 2.2: The e.g.-rule-e.g.-rule technique extents the rule-eg-rule technique

2.4. Different Representations 17

Beginning with a real-world example, students get a first concrete
impression of the topic and can relate it to their prior knowledge. This
introduction is then followed by Bligh’s first rule, i.e., a concise state-
ment of the abstract theories and concepts, another elaboration, and
the final summary.

The same idea lies behind the well-established teaching technique
of advance organizers [8], where the main concepts of new topics are
taught concisely at the beginning of a lesson, before moving on to the
actual details. Advance organizers are particularly valuable if they use
an analogy to knowledge or real world experience. This way, learners
can not only connect new topics to prior knowledge, but are also less
afraid of abstract topics.

Our idea is to go one step further, and not only connect abstract
topics to prior knowledge, but also connect abstract topics to prior
knowledge based on real-world applications.

An introductory real-world example helps students to comprehend
abstract topics. Additional support results from using different repre-
sentations and thus allowing different approaches to a topic, as pre-
sented in the following section.

2.4 Different Representations

Abstraction is a useful and powerful method to summarize complex
concepts, yet it is often still demanding and requires a significant level
of experience. While we learn over time to accept and understand
explanations given to us just in pictures or as text, we started out
as children learning from concrete objects and experiences only. Even
though after finishing school we are well accustomed to conceptualize
events and procedures solely in our imagination, we still appreciate
concrete and relevant examples from our real-world experience.

Propositional logic, queuing theory, and dynamic systems are typi-
cally taught as abstract and formal topics, but less abstract represen-
tations might introduce these topics more readily. Does it really help if
our first knowledge of logic is that “1” stands for “true”, “∧” for “and”,
and “1∧ 0 = 0” holds? Do we really understand the relevance of queu-
ing theory if it is introduced as a M/M/1 system in Kendall’s notation?
Or do we gain much understanding from reading that each ergodic fi-
nite Markov chain has a steady state? Finding representations that
are more appealing and realistic than a formal introduction to abstract

18 Chapter 2. Didactic Concepts for Interactive Learning Environments

concepts plays a major role in the process of teaching abstract topics.
Based on Piaget [59], Bruner et al. [27] introduce the theory of three

basic modes of instruction, leading to three different representations;
see figure 2.3. These modes can be seen as one possibility to move
away from abstraction and mere formalism in teaching. We summarize
the three representations here and extend them by a fourth one as
introduced by Hartmann et al. [42].

„tree“
Symbolic - symbol

Iconic - picture

Enactive - action

Virtual-enactive
– simulated action

Figure 2.3: Illustration of the four different representations

Symbolic Representation: Acquire knowledge through symbols (e.g.,
text or signs). Symbolic representations are concise and are espe-
cially suitable if one has already an appropriate intuitive percep-
tion. Most people do neither need to climb a tree nor see a picture
of a tree to imagine what “tree” stands for.

Iconic Representation: Facts are represented as pictures. Concrete
objects, events or procedures are understandable as visualizations.
A hotel brochure or a city map often suffices to get the picture and
to orient oneself.

Enactive Representation: Learning by doing. This is especially the
case for children, as they learn through their own actions, grouping
of objects, and through observation. Kids need no manual for a
tricycle.

Virtual-Enactive Representation: Through manipulation in a software
environment enactive processes are simulated. Popular exam-
ples are learning environments where students can control virtual
robots on their screens.

2.5. Providing Interactivity and Immediate Feedback 19

The enactive representation is especially useful for an introduction
to a new topic. Through the students own actions, the subject matter
becomes better accessible and better anchored in the learners mind.

Representations in InfoTraffic

These basic modes of representations are repeatedly employed through-
out the InfoTraffic learning environments. In LogicTraffic, formulas and
truth tables offer a symbolic representation, the static picture of a traf-
fic situation corresponds to an iconic view, and through mouse-clicks
on traffic lights and animation of the situation a virtual-enactive mode
is achieved. In QueueTraffic, numeric data sets and charts give a sym-
bolic representation of the situation. The static traffic situation and the
phase clock are iconic, and through simulation, a virtual-enactive mode
is reached. In DynaTraffic, the state vector and the transition matrix of-
fer a formal representation, whereas the graphs with vertices and edges
(arrows) provide an iconic representation. The macroscopic simulation
of traffic (see section 4.5) gives an abstract form of virtual-enactive rep-
resentation in DynaTraffic since only the accumulated numbers of cars
change in the simulation.

As seen in this section, educational software providing different re-
presentations allows different approaches to a topic. Closely related to
this issue is the question “How can I modify the representation or the
content of the representation?” - i.e., the issue of interactivity. In ge-
neral, a learning environment becomes more attractive, the more user
interaction it allows.

2.5 Providing Interactivity and
Immediate Feedback

Good educational software is according to Hartmann and Reichert [62]
usually characterized by a high degree of interactivity. Already Kay
[47] stated about computers in education that “the first benefit is great
interactivity”. We use a model by Schulmeister [68] that defines six
levels (see figure 2.4) of increasing human-computer interaction. Level
one means no interaction at all, only the display of information. Level
two lets users navigate through the representation of information. Level
three offers multiple representations of the content. On level four, the
user can modify parameters of the representation. Additionally, on

20 Chapter 2. Didactic Concepts for Interactive Learning Environments

level five, the user can manipulate the content itself. Level six means
the user can create and manipulate objects and investigate how the
system reacts, i.e., gets feedback.

Viewing objects and receiving1
Watching and receiving multiple representations2
Varying the form of representation3
Manipulating the component content4
Constructing the object or representation contents5

Constructing the object or contents of the representation
and receiving intelligent feedback from the system
through manipulative action

6

DefinitionLevel

QueueTraffic
DynaTraffic

LogicTraffic

Figure 2.4: The six levels of interactivity in the taxonomy of Schulmeister

The InfoTraffic learning environments have been developed with a
high level of interactivity in mind. According to Schulmeister’s defi-
nitions above, LogicTraffic, QueueTraffic, and DynaTraffic all reach an
interactivity level of four, as all three allow students to modify the simu-
lation parameters. LogicTraffic additionally offers students to directly
manipulate its formulas, which corresponds to an interactivity level of
five. LogicTraffic further gives feedback about the current safety state,
thus reaching level six.

Note that only few computer-based learning environments yield a
high degree of interactivity. One reason is the high cost of develop-
ment. As Berg [11] notes: “Highly interactive software using simulation
strategies is almost non-existent in higher education. Clearly the cost
of developing such software is a barrier.” Only educational software
that focuses on fundamental ideas has the potential to amortize the
high cost of development.

2.6 Automatic Update of Corresponding Views

One major advantage of learning environments is their ability to pro-
vide multiple visualizations of the same content and to update these
corresponding views automatically as soon as the content changes.
This behavior offers the students new insights and allows different
approaches to the content, depending for example on the students’
cognitive preferences and capabilities. Corresponding views are much

2.6. Automatic Update of Corresponding Views 21

deployed in the InfoTraffic learning environments and have for exam-
ple as well been used extensively in the GraphBench project [21, 23].
Brinda [25] presents a similar views concept (Sichtenkonzept) in the
context of learning environments targeted at an introduction to object
oriented modeling. We now present corresponding views given in the
three InfoTraffic learning environments.

One of the main correspondences in LogicTraffic is the current traffic
light setting to the accordant row in the truth table. This correspon-
dence is emphasized with a yellow trapezoid and a yellow underlaid row
in the truth table (see figure 2.5). It works in both directions, i.e., if
the student marks a certain row in the truth table, the traffic lights in
the situation change accordingly and vice versa. This correspondence
works analogously for the parse tree visualization in LogicTraffic. An-
other important correspondence is the one between the truth table and
the formula corresponding to the truth table. Whenever the truth table
configuration changes, the formula changes accordingly and vice versa.
A last correspondence is the status indication, the icon of a policeman
in different poses showing the safety state of the current truth table or
formula.

Figure 2.5: The correspondence between the traffic light setting and the selected
row in the truth table. - LogicTraffic screenshot

The simulation in QueueTraffic has an obvious correspondence be-
tween the traffic light settings in the situation and the current phase.
The main correspondence in QueueTraffic is the one between the visu-
alization of the traffic situation and its corresponding numeric entries
in the data and charts tab. Students can for example either directly

22 Chapter 2. Didactic Concepts for Interactive Learning Environments

see in the situation that there are n cars waiting, they get this informa-
tion from the data tab, or they can read this number from the charts
tab. Again, all these views are updated automatically as the simulation
runs.

DynaTraffic offers corresponding views between situations and their
corresponding transition graphs, i.e., situations always correspond to
the transition graph and vice versa. There are many different corres-
pondences in DynaTraffic between the traffic situation, the transition
matrix, the statistics and the transition graph. The colors of vertices
in the transition graph for example correspond with the colors of the
corresponding arrows in the situation, the colors of the labels in the
transition matrix and the colors of labels and charts in the statistics.
If a value in the situation is changed, this is immediately updated in
the state vector too. Or if a value is changed in the transition graph,
the corresponding entry in the transition matrix is changed. If the
mouse moves over an edge or a vertex in the transition graph, the
corresponding entry or row in the transition matrix is highlighted.

All these correspondences show and emphasize the connections and
dependencies between the different views and thus allow students a
deeper understanding of the presented concepts.

2.7 Conclusions

InfoTraffic incorporates best-practice knowledge and state-of-the-art find-
ings from educational science. The InfoTraffic learning environments
cover fundamental ideas of computer science and thus justify the cost
of development. Abstract topics are presented based on real-world ex-
amples, allowing students to connect them to previous knowledge and
experience. For usage in class, we further present an e.g.-rule-e.g.-rule
technique which can as well be seen as an extension of an advance
organizer. Our new learning environments provide formal, iconic and
virtual-enactive representations, automatic updates of corresponding
views, and a high level of interactivity.

Through simulation and analysis of everyday traffic situations and
the manyfold possibilities to interact with the software, InfoTraffic is
attractive for young people and addresses the “Nintendo generation” as
described by Guzdial and Soloway [41].

According to Hartmann and Reichert [62], “The use of educational
software can enrich the process of learning, provided that there is a

2.7. Conclusions 23

pedagogically sound concept for its use.” With the didactic concepts
for interactive learning environments presented in this chapter, we are
convinced to have created such a pedagogically sound concept.

24 Chapter 2. Didactic Concepts for Interactive Learning Environments

3 LogicTraffic:
Safe Intersections and
Propositional Logic

“It’s logical!” – Logic is omnipresent in our everyday life. In schools
however, logic is barely a topic and if it is, the classes are mostly un-
necessarily abstract. This chapter introduces the learning environment
LogicTraffic for controlling traffic intersections as an intuitive approach
to logic as part of general education.

3.1 The Importance of Logic

The relevance of logic for general education is indisputable. Without
logic we could not argue rationally. It is clear that a statement like
“Zürich is the capital of Switzerland.” is either true or false. And from
the statement “It is raining cats and dogs” we conclude that the street
is wet. From an educated person we expect as well that she masters
complicated conclusions. From “Either Peter or Roger plays tennis” and
“Peter does not play tennis” we conclude “Roger plays tennis”. We use
similar simple propositions to state queries in search engines. But as
Jansen et al. [45] point out, many people fail at entering correct queries
using Boolean operators. Stating correct propositions thus might not
be that simple after all.

Although logic accompanies us in our everyday life, the concepts and
terms behind it are often only intuitively clear. And Logic is neverthe-
less not part of general education. In their series of essays “Informatik
als Grundbildung” Wedekind et al. [81] make this phenomenon clear:
“Mit unserer natürlichen Sprache teilt die Logik das Schicksal, gewis-
sermaßen wildwüchsig erworben zu werden. Dass dieser Erwerb der
korrigierenden und fördernden Ergänzung durch die Schule bedarf, ist
im Fall der Sprache eine Selbstverständlichkeit, im Fall der Logik jedoch
nicht auf der Agenda.”

26 Chapter 3. LogicTraffic: Safe Intersections and Propositional Logic

Besides everyday life there are scientific areas where logic is of central
importance. We are going to list three prominent representatives.

Logic is very important in mathematics. In fact, Logic and math-
ematics are tightly coupled. If one talks of logic, often mathematical
logic such as in propositional logic (PL) or in formal systems is meant.
Logic provides precise and formal notations for mathematics and there-
fore provides a toolbox, e.g., for mathematical proofs. There would be
no mathematical proofs without logic.

Electrical engineering is tightly coupled with logic. Modern inte-
grated circuits are nothing but formulas in PL cast into hardware;
variables and operators are mapped to registers, gates and circuits.

Logic is central to practically every subarea of computer science. As
soon as processes or data become formalized and thus can be executed
or processed by a computer, there is no way around clear and unique
notations and semantics. Denning [36] characterizes computer science
with five “windows of computing mechanics”. Table 3.1 shows exempla-
rily the role of logic in these five areas. The list of example applications
of logic could easily be extended. This illustrates the importance of
logic for computer science and indicates the close connection between
logic and computer science.

Window Example application of logic
Computation Proofs, runtime analysis, pro-

gram verification
Communication Coding (e.g., CRC with XOR)
Coordination Fuzzy Logic in HCI, mutex proofs

for deadlocks
Automation Artificial intelligence, logic pro-

gramming
Recollection Querying with logical operators

(e.g., SQL queries)

Table 3.1: Logic in the five windows of computing mechanics

3.2 Logic in General Education

Even though logic is very important, it is commonly neglected in general
education. Wedekind et al. [81] write about the reasons:

Die Logik lädt in ihrer üblichen Darstellung nicht gerade zu
einer näheren Beschäftigung mit ihr ein. Führende Logiker

3.2. Logic in General Education 27

sprachen und sprechen zwar vom “natürlichen Schliessen”,
ein Blick in ein Logiklehrbuch zeigt aber in der Regel Zei-
chen und Formeln, die alles andere als “natürlich” aussehen.
Dazu kommt eine Reihe von “Prinzipien”, die man als plau-
sibel, selbstverständlich, fraglos gültig o. ä. zur Kenntnis zu
nehmen hat.

Wedekind et al. conclude that it is not too difficult for beginners to
learn the formal game of logic, but is is hard to understand it.

If one takes a look at the educational landscape in Swiss and German
high schools, logic instruction is little standardized. No guidelines exist
and if logic is taught at all, usually only some aspects of it are covered.

In the course of mostly optional classes in philosophy, principles such
as Aristotle’s law of noncontradiction, the law of the excluded middle
or the concept of natural deduction are covered on a high level. A real
dealing with propositional or predicate logic does not take place.

In math, notations, conventions as well as the symbols used and their
semantics play a major role. Universal and existential quantifiers are
directly borrowed from predicate logic. In calculus many formulas of
the kind “∀ε > 0 ∃δ > 0...” exist. And constructs from propositional
and predicate logic such as “∀ lines g and h, g 6= h holds: g intersects
h or g and h are parallel” are used in geometry, for example.

In the resolution of the German Kultusministerkonferenz zu den ein-
heitlichen Prüfungsanforderungen in der Abiturprüfung (EPA) in math-
ematics [53], logic is not of big importance. The word “logic” for ex-
ample only appears once in this document of 50 pages, namely as one
out of eleven especially suited topics for an oral exam. Terms such
as “quantifier” or “predicate” do not appear in this resolution at all.
Methods and techniques for mathematical proofs are covered in this
document only marginally.

Traditionally class books for logic [9, 43, 67] or introductory lectures
[83] to logic targeted at university level typically cover topics such as
propositional logic (propositions, truth values, syntax and semantics,
Boolean algebra, normal forms), predicate logic (predicates and quan-
tifiers, syntax and semantics), resolution, and formal proofs. This ap-
proach to logic is obviously aligned with semantics of the field of logic,
the contents are usually taught in a formal and abstract manner.

Concise notations and the language of formulas are a useful tool for
experts. For beginners though, motivation and a link to their everyday
life experience get lost. This might be one of the reasons, why logic was

28 Chapter 3. LogicTraffic: Safe Intersections and Propositional Logic

largely removed from curricula together with set theory in the 1970s.
Together with set theory, logic was reduced to an abstract and artifi-
cial entity. Many students were able to draw Venn diagrams, connect
elements of different sets with arrows, but they did not gain any deeper
insight.

If logic should become an important part of general education, one
needs to find an approach that better accommodates the students pre-
requisites. Instruction is especially effective, if learners can create a
reasonable link between the item to learn and their everyday life, their
own sphere of experience. For an instruction to logic, this asks for an
approach from close-by examples to the general theory.

Logic obeys strict formal rules. Thus a computer-aided learning en-
vironment suits well for an introduction to logic. We introduce the
new learning environment LogicTraffic which illustrates basic concepts
of logic with the help of traffic intersection control, thus building on
experience of learners.

3.3 The Program LogicTraffic

The main idea behind LogicTraffic is to find a formula in propositional
logic (PL) that makes a given intersection “safe”, i.e., which prevents
collisions through appropriate signaling on the corresponding traffic
lights. With each lane corresponding to a variable, and true and false
indicating a green and red light respectively, a “safe” formula is one
that avoids any two crossing lanes to simultaneously have green traffic
lights. Orange lights are omitted for simplicity and because LogicTraffic
is only concerned about safety in a static traffic light state. In the
static traffic world of LogicTraffic only the two states traffic allowed to
run and traffic not allowed to run exist, there is no state in between.
Safety in transitions (i.e., the dynamic and more realistic case with
some time in-between changes of traffic light) are not considered, and
for the simulations in the test mode, a fixed red time in-between is used
in the case of a traffic light change. The exact semantic interpretation
of an orange traffic light is not clear anyway, and propositions in PL
are by definition entities that can clearly be assigned one of the two
possible truth values true or false.

The user interface of LogicTraffic [4, 7] consists of five parts (see
figure 3.1). The central part shows a particular traffic situation, repre-
senting an intersection with a number of intersecting lanes and their

3.3. The Program LogicTraffic 29

1
2
3
4

5

7 98

6

Figure 3.1: The interactive learning environment LogicTraffic

corresponding traffic lights. A truth table to the right shows all pos-
sible traffic light configurations for the intersection, allowing students
to manually designate certain configurations as “safe” or “unsafe”. A
configuration in LogicTraffic stands for one specific setting of the traffic
lights, i.e., each row in the truth table represents one possible configu-
ration. Below the truth table, a corresponding formula in PL is shown
that summarizes the truth table above, according to whatever settings
of “safe” and “unsafe” values the student entered. Instead of manually
filling out the truth table, students can also use the formula editor at
the bottom to directly enter a PL formula and initialize the truth table
accordingly. Last not least, a set of buttons on the right for example
allows students to simulate each line of the truth table in the traffic
situation window (figure 3.2), thus gaining a first-hand understanding
of potentially conflicting traffic light configurations.

The semantics of the five buttons on the right of the truth table as
numbered in figure 3.1 are as follows.

Get Hint (1): Provides hints about unsafe and suboptimal rows in
the truth table, i.e., which row is not safe or not optimal yet, if
any.

Check (2): Checks for the safety of the actual truth table. Each row
marked safe (i.e., a 1 in the safe column) is simulated for a certain

30 Chapter 3. LogicTraffic: Safe Intersections and Propositional Logic

Figure 3.2: Traffic animation in LogicTraffic, with the control buttons for
start/pause and stop

period of time to check whether a crash occurs or not.

Clear (3): Clears the truth table and accordingly the corresponding
formula.

Scroll/Shrink (4): Changes the display mode of the truth table be-
tween the modes scroll (show truth table with fixed row height
and scroll bar if needed) and shrink (show the whole table and
shrink/stretch if needed).

Formula form chooser (5): Sets the desired form for the automati-
cally generated formula corresponding to the actual truth table.

As stated above, LogicTraffic automatically generates and updates the
formula to the actual truth table. There are six different forms for these
formulas available, see picture 3.3:

DNF: disjunctive normal form (optimized).

CNF: conjunctive normal form (optimized).

CDNF: canonical disjunctive normal form (minterms exclusively).

CCNF: canonical conjunctive normal form (maxterms exclusively).

Implication: an optimized formula, including the implication opera-
tor, if possible.

3.3. The Program LogicTraffic 31

Simplest: optimized formula.

Figure 3.3: The six forms for automatically generated formulas in LogicTraffic

All optimized formulas are generated with the Quine-McCluskey [46]
algorithm, which is functionally identical to Karnaugh mapping, but
more efficient for use in computer algorithms. Optimization happens
with respect to the number of variables and operators appearing in
the formula, i.e., a formula is better the smaller their weighted sum
is. See appendix B.3 for details on the algorithms for the optimized
Implication and Simplest forms.

not safe safe optimal

Figure 3.4: Icons for the three states not safe, safe and optimal in LogicTraffic

Formulas in LogicTraffic are not safe, safe or optimal with respect
to the given situation. To represent these states, three different icons
of a policeman are used, see figure 3.4. Not safe means that collisions
are possible (i.e., there is at least one “unsafe” row with a 1 in the safe
column). In safe state, no collisions are possible, but there are more
safe configurations (i.e., there is at least one “safe” row having a 0 in
the safe column). And optimal finally stands for a safe state with all
safe configurations set as safe (i.e., all “unsafe” rows have a 0 in the safe
column and all “safe” rows have a 1 there).

As stated above, the formula editor of LogicTraffic lets the user enter
and edit formulas. Editing happens either with the buttons on the left
of the formula editor panel or through keyboard input. The semantics

32 Chapter 3. LogicTraffic: Safe Intersections and Propositional Logic

of the other four buttons is the following, see figure 3.1 for the number
references.

Buttons 4 and 5 (6): button 4 adjusts the truth table according
to the formula in the formula editor and button 5 vice versa.

Parse (7): parses the formula and updates the safety status indication
(policeman) to the right of the formula editor accordingly.

Clear (8): clears the formula.

Show ParseTree (9): displays the parse tree of the current formula
in a different window, see figure 3.5.

Figure 3.5: An example parse tree in n-ary form as visualized by LogicTraffic

LogicTraffic offers two different size modes for parse trees: normal
renders the tree in fixed size and stretch adapts the size of the tree
to the current window size. LogicTraffic further allows two kinds of
trees, namely binary and n-ary parse trees. N-ary trees are especially
useful to visualize the structure of formulas in CNF and DNF. Figure
3.5 shows a parse tree in n-ary form in stretch size mode.

3.4 Learning Goals and Use of LogicTraffic

The learning goals of LogicTraffic include the basics of PL, and cover
concepts such as variables, truth values, logical operators, formulas,
equivalence of formulas, and normal forms. By using the intersec-
tion/traffic light metaphor, students can immediately connect the con-
cept of PL to real-world situations, and animated collisions allow direct
feedback whenever conflicting assignments are made.

3.4. Learning Goals and Use of LogicTraffic 33

LogicTraffic allows a stepwise introduction to the basic concepts of
PL. In a first step, students can control the traffic lights manually
and gradually fill the truth table. For each possible configuration of
traffic lights, the student declares whether the resulting traffic control
is safe or not. Using the simulation allows a visual validation of the
configuration set by the user.

LogicTraffic comes with a set of intersections of growing complexity,
which can be loaded and solved in succession. While a simple inter-
section with two lanes can still be configured in the manual fashion
described above, students quickly realize that increasingly complex si-
tuations lead to unmanageably large truth tables, hence a transition to
equivalent PL formulas is motivated. Consequently in the next step,
students try to control a given intersection only with the help of a
PL formula, without using the truth table. In a last step, students
try to find more compact descriptions of those formulas that describe
safe intersection. The controls allow students to transform a given
formula into different representation, e.g., into canonical disjunctive
normal form, which in turn leads to the investigation of the relation-
ship between normal forms and the truth table. A final step thus might
involve devising an algorithm that allows for the construction of a for-
mula in CDNF, given a corresponding truth table.

After having introduced the basic concepts of PL, further exercises
with LogicTraffic could lead to concepts such as tautology or even more
advanced concepts such as satisfiability, efficient testing of equivalence,
and an introduction to complexity theory.

Example Traffic Situations and Exercises

All the teaching materials accompanying LogicTraffic are found online
under [3]. To give an impression of the different levels of difficulty of
exercises possible with LogicTraffic, we show an example with two dif-
ferent traffic situations, one with two and the other with five lanes.
Figure 3.6 shows the given traffic situations (a), the safe truth table
(b), a formula as it might be found by students (c), and finally a for-
mula generated by LogicTraffic (here in Implication form and in DNF,
respectively).

Safe formulas can be interpreted in natural language. The safe for-
mula C → (¬A ∧ ¬B) for the situation shown in figure 3.1 can for
example be read as “If C runs, then A and B are not allowed to run.”

34 Chapter 3. LogicTraffic: Safe Intersections and Propositional Logic

1

(a)

(b)

(c)

(d)

Figure 3.6: Example situations in LogicTraffic

This offers a deeper understanding of formulas and illustrates the link
between formulas and natural languages and vice versa.

One interesting exercise is to find an algorithm to directly create safe
formulas for a given traffic situation. There are several solutions; as an
example we here present an algorithm in pseudo code, producing safe
formulas in CNF:
cSet = empty set of clauses
foreach(collision point of any two lanes X and Y)
cSet.add(”(¬X ∧ ¬X)”)

build one big conjunction over all clauses in cSet

Another algorithm for example involves considering each lane (e.g.,
X), the lanes (e.g., Y and Z) intersecting with this one and creating
clauses of the form ”(X → (¬Y ∧ ¬Z))”. Ideas for other algorithms
are mentioned in the accompanying teaching materials.

An exercise could also be to draw a possible traffic situation to a
given formula; this is an ambitious task. For this type of exercises
an editor for intersections might be desirable. We abandoned such an

3.5. Related Work 35

editor deliberately in order to keep the learning environment for the
user as simple as possible.

3.5 Related Work

Of course LogicTraffic is not the only and first software concerned with
an introduction to logic. The following section shortly reviews three
exemplary programs. The first is one of the classics in the field. The
second is an up-to-date approach to logics at university level. The third
is a representative online applet. To round off this section, we report
on how safety at intersections with traffic lights is guaranteed in reality.
We present the approach of the city of Zurich and compare it to the
approach of LogicTraffic.

Tarski’s World

The program Tarski’s World [9] offers an introduction to predicate logic
and lets learners build two- and three-dimensional worlds with simple
geometric objects, see picture 3.7. The objects are ordered on a chess
board like field. They are of different shapes such as cube or pyramid
and differ in attributes such as size or color. The learner can formulate
sentences in predicate logic and the system will check and indicate
whether these apply in the given situation or not.

Figure 3.7: Predicate logic in Tarski’s World

36 Chapter 3. LogicTraffic: Safe Intersections and Propositional Logic

Formulas in predicate logic like the following can be created:

• For all objects holds: If an object is a tetrahedron, then it is not
large: ∀x(Tet(x) → ¬Large(x))

• There exists a small object a, a medium sized object b and between
a and b there is an object c: ∃a∃b∃c(Small(a) ∧Medium(b) →
Between(c, a, b))

With a question-answer game Tarski’s world offers the possibility
to test the truth value of particular sentences in predicate logic. An
example (see figure 3.7): Given is the sentence ∃x(Tet(x)∧Large(x)).
In a first step we declare this sentence to be wrong. Then the system
asks us, whether we are convinced that each object falsifies (Tet(x) ∧
Large(x)). We affirm. Upon that the system chooses a concrete object
f and asks us, whether (Tet(c) ∧ Large(c)) is wrong. We affirm our
belief that Tet(f) oder Large(f) is false and choose Large(f) as false
expression. In the end, the systems tells us that we have lost, since the
expression Large(f) is true.

Tarski’s world has an appealing, visual user interface and illustrates
with few predicates an application of predicate logic. The world is
simple and the possibilities for interactions are convincing. But Tarski’s
world is not able to create a real link to everyday life, the representation
is limited to an iconic and symbolic view.

Propositional Logic (PL) in the Virtual Logic Laboratory

ViLoLa (Virtual Logic Laboratory) [79] is a collection of ten logic-
oriented modules for logic education at university level. The modules
range from basics to advanced and are parted into mathematical logic,
logic in computer science and philosophical logic. They cover topics
such as introduction to predicate logic, computability and complexity or
logic and argumentation.

As an example we take a closer look at the module classical proposi-
tional logic (CPL). This module primarily consists of a text document
of 131 pages, giving a compact and formal introduction. The scrip-
tum is on the one hand supplemented by multiple-choice questions to
selected chapters. These questions can be answered and evaluated on-
line. On the other hand, there are many exercises referring to the
software logics workbench [78] by the same authors. This program al-
lows manipulation of formulas in PL in a command-line style; there are

3.5. Related Work 37

Figure 3.8: Screenshot of an example session with the Logics Workbench

for example functions to test for satisfiability or to transform formu-
las. Figure 3.8 shows a session with the display of the truth table of a
formula and transformations to equivalent formulas. Note for example
the not very appealing textual display of a truth table in figure 3.8.

This module offers thematically a broad formal introduction to PL.
The direct links from the scriptum are useful, the user is for exam-
ple directly forwarded to a multiple-choice question or to the logics
workbench with a single mouse click. The former allows testing of the
learners understanding through given test questions at the end of a
chapter. With the help of the logics workbench, exercises can be solved
and evaluated directly on the computer. The software logics work-
bench is quite spartan and can only be controlled via command line,
see picture 3.8. Overall the module is very formal and abstract.

Truth Table Constructor, an online applet

Many online tools to visualize simple formulas in PL or to display truth
tables exist. As a representative tool, the Truth Table Constructor
[20] is a freely available Java applet displaying truth tables to a given
formula in PL, see figure 3.9. This simple program lets the user enter
a formula in ASCII-encoding. It then displays the corresponding truth
table if the formula is well formed. In case of a parse error the cursor
prompts at the position, where the error occurred. The truth table is
filled by the program at once or step-wise per row or column at the

38 Chapter 3. LogicTraffic: Safe Intersections and Propositional Logic

Figure 3.9: Screenshot of the Truth Table Constructor

user’s desired speed. Truth tables can be saved as text or exported as
images. There is no further functionality such as formula simplification
or creation of normal forms. The Truth Table Constructor is a simple
online application with quite limited functionality.

LogicTraffic and the Reality

To motivate the idea behind LogicTraffic and see how safety at inter-
sections is guaranteed in reality, we contacted the responsible people in
the department for traffic control of the city police of Zurich [30].

The city police of Zurich has sketches of every intersection with traf-
fic lights in the city, and these sketches are similar to the situations
depicted in LogicTraffic. As shown in figure 3.10, in a sketch of one
specific intersection, all lanes are numbered. And in a corresponding
matrix, the minimal times in-between a traffic light change are given
for any pair of intersecting lanes. If two lanes do not intersect, there
are no minimal times in the corresponding fields. This matrix contains
the same (and more) information as the truth table in LogicTraffic.

A last detail to mention is the fact that the information of this matrix
is cast into hardware and locally present at each intersection. This
fail-over mechanism prevents locally unsafe states of the globally run
traffic control system, i.e., if the global control assigns green light to
two intersecting lanes, the whole intersection will immediately switch

3.6. Conclusions 39

to an orange traffic light blink mode.

Figure 3.10: Sketch of a real intersection and data sheet “Zwischenzeitmatrix”

LogicTraffic obviously represents a model of reality, it is just a lit-
tle simpler and omits details. This is a typical approach in teaching:
Through abstraction, reality is presented in models that show on the
one hand the fundamental concepts beyond real-world phenomena and
that on the other hand are simple enough to be understood by stu-
dents. Other well-known examples of this approach include typical
experiments in chemistry or physics school laboratories. In that sense,
LogicTraffic is a virtual laboratory for students to explore propositional
logic embedded in a real-world example.

3.6 Conclusions

LogicTraffic is a new learning environment for an introduction to PL
presenting an application of PL in the real-world scenario of traffic
control. The software is highly interactive and allows to tackle problems
of different levels of difficulty.

The three related software examples in the previous section illustrate
the strengths of computer-aided learning environments like automatic
transformation, calculation and checking of formulas and graphical re-
presentation of certain situations and states. LogicTraffic makes use
of these advantages too. The three related programs show also possi-
ble stumbling blocks for learning environments for an introduction to

40 Chapter 3. LogicTraffic: Safe Intersections and Propositional Logic

an abstract topic such as logic: All three environments are relatively
formal, dry and clinic.

LogicTraffic is based on a realistic scenario as shown by a comparison
to the approach taken by the city of Zurich.

LogicTraffic is to the best of our knowledge the first interactive learn-
ing environment targeted at PL in a reality-near way. Its real-world-
based approach with virtual-enactive representations offers a new access
to logic and is a new chance for teaching logic in general education.

4 QueueTraffic:
Traffic Jam and
Queuing Theory

Traffic jams are a well-known phenomenon and queuing theory is a
mathematical tool to model and analyze traffic jams. This chapter
introduces the interactive learning environment QueueTraffic as the se-
cond component of InfoTraffic. QueueTraffic offers the functionality
to control, simulate, and analyze traffic intersections and thus gives a
gentle introduction to the theory of queues.

4.1 The Importance of Waiting Queues

Even though queuing theory is far from being noteworthy knowledge
among the general population, queues are generally well known: We
have to wait in queues quite everywhere we go and whatever we do, be
it on the road, in supermarkets, at the post office, or at our doctor’s.
How do queues work and why do they occur? Or maybe more impor-
tantly: How can they be avoided? While not everybody might care
for answers to these questions, some people are faced with them every
day: the manager of a supermarket deciding how many cash registers
to open on which day and daytime; the hospital staff trying to pro-
vide expedient treatment at peak times with fewer doctors and nurses;
or airport control faced with bad weather and the start of travel sea-
son. Mathematical analyses of the above stated real problems typically
involve modeling the problems using queuing theory.

Besides the connection to everyday life described above, queuing theo-
ry is important in scientific disciplines that require some form of dy-
namic capacity planning, prediction, or analysis, e.g., in any kind of
logistics or communications (e.g., telephone, packet routing in the In-
ternet, printers). While an in-depth understanding of queues requires a
substantial amount of higher mathematics (e.g., calculus and probabili-
ty theory), an intuitive understanding and approach might be sufficient

42 Chapter 4. QueueTraffic: Traffic Jam and Queuing Theory

in many cases, e.g., for directing traffic around an accident, or when
staffing point-of-sales during special sales. Having a general grasp of the
underlying problem can ease further comprehension of more advanced
models and levels of abstraction.

X

in out

Arrival rate Throughput

Server
Utilization = Arrival rate / Throughput

Utilization < 1 no (or little) congestion: system not fully loaded
Utilization ≈ 1 „a little“ congestion: system loaded
Utilization > 1 growing congestion: system overloaded

Figure 4.1: A typical sketch of a queuing model

In computer science, queuing systems [80] are typically drafted as
illustrated in figure 4.1. The circle with the X stands for example for
a web server. We see requests entering the system from the left at a
certain arrival rate. The throughput corresponds to what is possibly
coming out of the system on the right. The utilization finally is the ratio
of arrival rate and throughput, its interpretation in terms of whether
the system is likely to be congested or not is given at the right bottom
of the figure.

This abstract model does not change, be the system a printer ma-
naging print jobs, a telephone center handling calls, or a supermarket
cash register serving its clients. Queuing systems are reduced to one
or several servers with respective arrival and service processes. This
abstraction is exactly the idea behind the standard mathematical no-
tation of Kendall for modeling queuing systems. In Kendall’s notation
X/Y/m for queuing systems, X describes the arrival process, Y the
service time distribution, and m the number of identical servers, see
for example [66]. Standard notations to describe X and Y are M
for memoryless (e.g., Poisson process or exponential distribution), D
for deterministic or G for general. So figure 4.1 displaying one server
shows for example a M/M/1 queuing system in Kendall’s notation if
the arrival process is a Poisson process and the service time follows an
exponential distribution.

4.2 Queuing Theory and Simulation

Additionally to focusing on applications in everyday life for introduc-
ing queuing theory, simulation can help too. Simulation as a virtual-

4.3. The Program QueueTraffic 43

enactive representation visualizes the behavior of different settings in
a system. Of course, simulation is not new in computer based instruc-
tion. New in QueueTraffic is the simultaneous view of a real intersection
situation with simulated cars and statistical data and charts. These si-
multaneous views force an understanding of the values of the abstract
key parameters (e.g., arrival rate, throughput) in a queuing model. In
this way, students can relate to their prior experience with traffic jams
and relate it to new concepts such as arrival rate or throughput.

Figure 4.2: The interactive learning environment QueueTraffic

4.3 The Program QueueTraffic

QueueTraffic offers an introduction to queuing theory by letting stu-
dents simulate and analyze traffic at an intersection. Important system
parameters can easily be changed.

The user interface of QueueTraffic consists of five parts (see figure
4.2). The central part of the window is as in LogicTraffic taken up

44 Chapter 4. QueueTraffic: Traffic Jam and Queuing Theory

Figure 4.3: QueueTraffic: the panel for traffic control

by a view of the traffic situation, representing an intersection with its
lanes and traffic lights. The traffic control panel (figure 4.3) at the
right top allows students to define phases, i.e., time slots when certain
lanes show a green light. Each phase is represented by a combination
of red and green signal settings and a duration. All phases together
make up a single round of the simulation. The circular diagram in the
top right shows the relative length of each phase within a round. The
example in figure 4.3 shows a rounds of 60 seconds consisting of three
phases, one of 24 seconds and two of 15 seconds. Note that QueueTraffic
automatically adds a fixed two second change time between any two
directly consecutive phases.

Figure 4.4: Charts in QueueTraffic

In the traffic volume panel, students can define the arrival rate of
cars for each of the lanes and whether the cars arrive Poisson dis-

4.4. Learning Goals and Use of QueueTraffic 45

tributed or with constant time intervals. Two buttons and a slider in
the simulation control panel at the bottom right of figure 4.2 allow
students to start and stop the simulation as well as to control its ex-
ecution speed. The data and chart tabs at the bottom left of figure
4.2 display statistic information about the current system settings in
numeric and graphic format. During simulation, these figures are con-
stantly updated. The user can choose which parameters (e.g., arrival
rate, throughput, utilization, number of waiting cars) he wants to have
displayed for which lanes. Additionally, parameters accumulated over
all lanes are available. Figure 4.4 shows an example chart displaying
the total utilization (averaged over all lanes) as well as the utilization
of lane D.

4.4 Learning Goals and Use of QueueTraffic

The learning goals of QueueTraffic include the basics of queuing theory
[13, 38, 66] and cover concepts such as throughput, arrival rate, average
waiting time, and Poisson distribution. The main idea is that students
gain an intuitive understanding of queuing theory through experimen-
tation with a range of different intersections, by changing parameters
like the arrival rate of cars for individual streets and the timing of the
individual traffic lights, and observing the resulting system behavior.
As an introduction, students start with a simple situation with only
one lane A. They are asked to define two phases of the same length,
with lane A having a green traffic light in one phase and red in the
other one. The students run the simulation, and observe the resulting
effects. They can reason about where in reality such situations happen
(e.g., pedestrian crossing or construction work) and get to know how
the program works from this simple example. They can see how cars
appear in the system and leave again, and whether queues are built up
or not. Students further get a qualitative impression and feeling of Pois-
son distribution and a constant interval time as well as the differences
between the two.

It is worth pointing out that the situation described above with only
one lane corresponds exactly to the standard queuing model with one
server. This simplest model is often used to model a waiting system at
one pay desk in a supermarket, at a printer, in a call center with one
phone, at a doctor’s waiting room, or at a post-office counter. If we
assume the arrival process to be a Poisson (i.e., random) process and

46 Chapter 4. QueueTraffic: Traffic Jam and Queuing Theory

the service time to have an exponential distribution, this corresponds
exactly to a M/M/1 system in Kendall’s notation as introduced in
section 4.1. Note that in QueueTraffic, with the arrival rate, one key
parameter can be directly entered in the traffic volume panel. The
other key parameter, the service time, can only be set indirectly as it
depends on the ratio between the lane’s green time per round and the
length of one round.

In a next step, students are taught basic concepts of queuing theory,
such as arrival rate and throughput, and they are asked to analyze the
given situation and parameters accordingly to these concepts. Students
can on the one hand run simulations in QueueTraffic and use the situa-
tion visualization and the statistics and charts. On the other hand,
they can do calculations based on the actual parameter settings of the
simulation and for example check, how close the effective throughput
simulated by QueueTraffic and the theoretical throughput – calculated
based on the corresponding simulation settings – are.

Finally, students can try to configure a given system such that no
traffic jam occurs, or so that waiting times are minimized. As in the
LogicTraffic application, different predefined intersections can be loaded
in order to gradually increase the difficulty level throughout the exer-
cises. Detailed problems with sample solutions can be found online
under [3], where among other teaching materials also slides for an in-
troductory presentation to QueueTraffic are available.

4.5 Related Work

Of course other software for traffic control and analysis exists, typi-
cally with different purposes though. Before we take a look at some
representative tools, we point out that there is an important distinction
between two main models. Models in the area of traffic simulation and
analysis are generally divided in macroscopic and microscopic traffic
models [50]. Macroscopic traffic models on the one hand consider pa-
rameters summed or averaged over a certain period of time, i.e., they
do not take each individual object (e.g., car) into account. Microscopic
traffic models on the other hand resolve traffic processes into move-
ments of individual vehicle. QueueTraffic provides a microscopic traffic
simulation.

4.5. Related Work 47

Professional Tools

There are many professional and commercial tools for traffic simulation
and analysis available for both macroscopic and microscopic traffic si-
mulation. To give an impression of tools using macroscopic simulation,
we mention the popular programs Ampel and Knobel by the company
BPS GmbH [73]. The institute for transport planning and systems at
ETH Zurich uses this software. Ampel is a tool for traffic planning
at traffic light facilities and Knobel for planning intersections without
traffic lights. Figure 4.5 shows a screenshot of Knobel, visualizing traffic
flow at an intersection.

Figure 4.5: Screenshot of Knobel

VISSIM [60] on the other hand claims to be the leading microscopic
simulation tool for modeling multimodal traffic processes and being
used in more than 70 countries worldwide. This comprehensive profes-
sional tool (see figure 4.6) offers realistic traffic models, 3D animation
and besides every kind of motorized traffic objects for example also
takes pedestrian and cyclists into account.

These two tools are not suitable for use in general education. They
are powerful but are not designed for educational purposes:

High Complexity: The two programs offer a lot of functionality with
detailed settings and adjustments. The programs are simply too

48 Chapter 4. QueueTraffic: Traffic Jam and Queuing Theory

Figure 4.6: Screenshot of Vissim

complex for educational use. Software for educational purpose
should be reduced to the basics. Or as Reichert [61] puts it: “In
education, we should strive for utmost conceptual simplicity.”

Difficult Familiarization: As a direct consequence of the high com-
plexity, these programs require a lot of time to get used to. This
is in general undesirable in education.

Different Target User: These tools are built for professionals and re-
quire knowledge accordingly. They are not intended to be used by
students. As an analogy, students in chemistry are not expected
to be able to operate an industrial laboratory, but to work with a
school laboratory.

Free Online Programs

There are a number of traffic simulation programs freely available on-
line, most of them are applets. We list two representative examples
here.

As can be seen in figure 4.7, the microscopic simulation applet from
[75] simulates a street with two lanes, it offers different situations like
lane-merging, obstacles or ringroads. The user can set parameters such

4.6. Conclusions 49

Figure 4.7: Screenshot of the microsimulation of road traffic applet

as the inflow (arrival rate) of vehicles or the ratio between cars and
trucks.

A second example is the applet from [65] which has two windows,
one displaying the current simulation and the other for controlling the
simulation, see figure 4.8. Parameters such as the number of cars per
lane or the duration of green phases can be altered. The program offers
as well a rudimentary traffic statistic.

While these two programs offer a visualization of traffic and animate
individual cars, they both lack meaningful statistical data about the
simulation. They have no corresponding views where the student can
observe what is going on in the lanes and with the values of the key
parameters of the simulation. Compared to QueueTraffic, these two
programs offer no selective display of important values of the current
simulation. They therefore miss to relate the simulations to the impor-
tant parameters of queuing theory.

4.6 Conclusions

QueueTraffic is an interactive learning environment offering an intuitive
way to modify the important parameters of a simple traffic simulation.
It displays all the relevant information about the current state of the
intersection and visualizes the data both statistically and pictorially.

50 Chapter 4. QueueTraffic: Traffic Jam and Queuing Theory

Figure 4.8: Screenshot of the crossroad simple traffic simulation applet

QueueTraffic thus allows a gentle introduction to queuing theory.
As shown in the previous section, QueueTraffic is not the first and

only software system dealing with traffic simulation and the analysis
of queues. Professional tools have a different goal than QueueTraffic.
They are intended for analyzing real and complex situations and there-
fore have to offer a broad functionality, allow a lot of different settings,
and obey professional standards. Professional tools are not suitable
for educational purposes. Furthermore quite a number of applets are
available online targeted at traffic simulation and the analysis of queues.
For educational purposes they lack a display of important key parame-
ters and relations between them and do not offer corresponding views.
QueueTraffic in contrast displays different views of important key pa-
rameters of queuing theory and they are constantly updated during
simulation.

To conclude, QueueTraffic closes the gap between complex profes-
sional tools and simple online applets. We hope that this attractive
simulation tool with its accompanying teaching materials becomes in-
creasingly used in classrooms as an introduction to queuing theory.

5 DynaTraffic:
Markov Chains and
Analysis of Dynamic Systems

The third component of InfoTraffic after propositional logic and queuing
theory addresses dynamic systems. Dynamic systems based on Markov
chains are a topic that involves more mathematical background than
the first two topics dealt with in InfoTraffic. This chapter introduces
the interactive learning environment DynaTraffic to analyze the traffic
distribution over time in a system with several intersections and thus
illustrating an exemplary use of Markov chains to model a dynamic
system given in a real-word situation.

5.1 The Importance of Markov Chains

An understanding of the concepts behind Markov chains is not essential
for everybody. These concepts appear only in curricula of mathematics
classes in higher education. Markov chains [13, 38, 66] are of significant
importance for engineering and mathematics, when dynamic systems
are modeled and analyzed. Markov chains have many applications in
natural sciences (e.g., population models), technical areas (e.g., failure
models) or economics (e.g., market models).

As a classic application of Markov chains, let us consider a weather
prediction model. Our simple model only consists of the three different
weather states “sun”, “rain”, and “cloudy”. From a weather state each
other weather state can directly be reached as depicted in the transition
graph on the left of figure 5.1. The weather changes from day to day
according to the given transition probabilities, i.e., the labels of the
directed edges in the same graph. The transition matrix P describes the
dynamics of this weather model and the initial state vector q0 describes
the initial distribution, i.e., in our example “day 0” is a sunny day. q1

describes the state vector after one transition and q∞ the steady state
vector of this system.

52 Chapter 5. DynaTraffic: Markov Chains and Analysis of Dynamic Systems

Whether or not a steady state exists is a typical question for a dy-
namic system. Other questions might be: “Given that it is a rainy day
today, how many days does it take on average until it is a sunny day
again?” or “Assume it is a sunny day today. What is the probability
that the day after tomorrow is a sunny day too?”

0.6 0.4

sun rain

cloudy

0.1

0.5
0.3

0.3
0.3

0.3

0.2

0.20.30.3

0.50.40.1

0.30.30.6

P = q0 =
0

0

1

q1 = P * q0 =
0.3

0.1

0.6

0.2727

0.2987

0.4286

q∞ = P∞
* q0 =

Figure 5.1: Markov chain for a simple weather model

In computer science Markov chains are a common tool to model and
analyze for example the likelihood of service availability. Also the ma-
thematical component of Google’s PageRank algorithm is the station-
ary distribution of a finite-state Markov chain, see [48].

5.2 Markov Chains and Linear Algebra

A Markov chain is formally defined as a time-discrete step-wise stochas-
tic process. A full understanding requires previous knowledge from
probability theory, linear algebra, and modeling. In this section we
show that Markov chains can serve as a suitable example to introduce
linear algebra, a topic that is typically covered in high schools.

Matrices are commonly introduced in high schools as two- or three-
dimensional transformations. This introduction with reference to geo-
metry does not allow matrices with more than three dimensions and
concepts such as eigenvalues and eigenvectors lack obvious interpreta-
tions. Markov chains allow matrices with more than three dimensions,
the simple weather model from figure 5.1 could for example easily be
enhanced with one or more additional weather states. Markov chains
further give obvious meaning to terms such as eigenvalue and eigen-
vector, as the steady state vector is the eigenvector of the transition
matrix associated to the eigenvalue 1.

5.3. The Program DynaTraffic 53

In a scenario where Markov chains serve as an introductory example
for linear algebra, not all concepts relevant or related to Markov chains
need necessarily to be taught, e.g., concepts specific to Markov chains
such as periodicity or recurrence.

5.3 The Program DynaTraffic

DynaTraffic models and analyzes dynamic traffic systems with several
intersections and lanes and offers an introduction to Markov chains. For
predefined situations, important parameters like the transition proba-
bilities and the current distribution of cars can easily be modified. The
program calculates transitions and visualizes the history of the state
vector graphically. DynaTraffic uses a Markov chain to calculate the
number of cars per lane according to the given transition probabilities.

Figure 5.2: The interactive learning environment DynaTraffic

In terms of traffic models as introduced in section 4.5, DynaTraffic

54 Chapter 5. DynaTraffic: Markov Chains and Analysis of Dynamic Systems

uses a macroscopic traffic model. Traffic is only considered in terms of
numbers of cars on certain lanes.

The user interface of the program consists of five parts (see figure
5.2). As in LogicTraffic and QueueTraffic, the top left part of the window
shows the current traffic situation, here as a directed graph. Vertices
represent intersections and edges represent lanes. Labels on the edges
display the current number of cars on this lane. The user can click on
these labels in order to set the current number of cars.

In reality far more cars are on lanes than on intersections. Dyna-
Traffic thus uses the line graph of the situation graph for its analysis.
This line graph has one vertex per edge of the situation graph and is
taken as the transition graph of the Markov model used in DynaTraf-
fic, i.e., vertices in this transition graph represent the lanes from the
situation graph. The transition graph is shown in the top right area
of the DynaTraffic window. Arrows depict the possible transitions and
labels display the transition probabilities. The user can set transition
probabilities by clicking on the edges’ label, see figure 5.3. The control
panel in the middle of the window lets the user execute one transition
or a consecutive sequence of transitions at selectable speed. The bot-
tom left part shows a statistics view, i.e., a history of the past state
vectors. The user can chose for which lanes the charts are displayed.
The transition matrix & state vector panel at the bottom right finally
displays the current transition matrix and state vector.

Figure 5.3: Edge highlighting and changing transition probabilities in DynaTraffic

The Markov chain model used in DynaTraffic obviously allows an
unlimited number of cars per lane, this can occur, e.g., with a non-
stochastic matrix. Such behavior is not realistic, real lanes cannot hold

5.4. Learning Goals and Use of DynaTraffic 55

an arbitrary large number of cars. Therefore in the default mode of
DynaTraffic, the number of cars per lane is limited, currently to 2000.
The user is not allowed to set the number of cars to a higher value and if
one lane reached the limit after the next transition, the execution of this
transition is aborted and a message is displayed. To make DynaTraffic
more realistic, user-defined upper limits per lane are also allowed to be
set. In this “upper limit”-mode, the limits of each lane are displayed
in the situation panel as depicted in figure 5.4. If such a limit for one
lane were reached after the next transition, the lane gets “closed”, i.e.,
the probabilities of all incoming arrows in the transition graph are set
to 0. In order to work with a stochastic matrix, the other rows of the
transitions matrix are normalized after closing a lane. In figure 5.4 lane
C is closed and therefore colored grey. Whenever the number of cars
on a closed lane is less than a certain percentage, currently 70 percent
of the upper limit, this lane is opened again and the probabilities of
the corresponding incoming arrows are reset to their previous values,
followed by a re-normalization of the transition matrix. The detailed
algorithms are described in appendix B.3.

Figure 5.4: Display of upper limits per lane

5.4 Learning Goals and Use of DynaTraffic

The learning goals of DynaTraffic include concepts of Markov chains
[13, 38, 66] such as transition graph, adjacency matrix, state vector,
periodicity of Markov chains, recurrence of states (i.e., transient, recur-
rent, absorbing), ergodicity, steady state, convergence, and convergence
speed. DynaTraffic allows direct manipulation of the state vector and
transition probabilities. Students gain insight into Markov models and
the behavior of Markov chains through corresponding views of the situ-
ation graph, the transition graph, the statistics, the transition matrix,

56 Chapter 5. DynaTraffic: Markov Chains and Analysis of Dynamic Systems

and the state vector. Furthermore DynaTraffic illustrates an application
of Markov chains and embeds Markov chains in the real-word scenario
of traffic analysis .

The use of DynaTraffic in school requires previous knowledge of con-
cepts from modeling [57] and graph theory [31, 82] like graphs, edges,
vertices, directed edges, or line graphs. These concepts are not learning
goals of DynaTraffic.

Compared to LogicTraffic and QueueTraffic the program DynaTraf-
fic requires more time to get used to because its underlying model
is more elaborate. A first introduction to DynaTraffic should explain
its model which basically consists of three steps, as depicted in figure
5.5. DynaTraffic is concerned with real traffic situations and as a first
step, students must understand that real situations can be modeled as
graphs. Since DynaTraffic applies a Markov model to analyze the traf-
fic distribution in lanes and not in intersections, in a second step the
situation graph is transformed to its line graph. Edges are interpreted
as possible transitions. In a third step, leading to the fourth view of
figure 5.5, the transition graph is represented as transition matrix and
the current number of cars per lane as state vector.

real traffic situation traffic situation graph transition graph transition matrix,
state vector

1 2 3

Figure 5.5: The four different views in the model of DynaTraffic

Once the model behind DynaTraffic and the different views of the
program are understood, students can tackle typical tasks with respect
to Markov chains. First exercises include observation and inquiry of
a steady state distribution (see figure 5.6), the behavior of a periodic
transition graph, effects of absorbing states, characteristics of transient
states, effects of non-stochastic transition matrices, or differences in
convergence speed.

Further uses of DynaTraffic might include matrix-vector multiplica-
tion, which becomes comprehensible with the displayed matrix and vec-
tor including corresponding colors. In advanced classes this might lead

5.5. Related Work 57

to the concepts of eigenvalues and eigenvectors, especially in connec-
tion with the steady state distribution. Additional uses of DynaTraffic
can integrate the “upper limit”-mode and use exercises where lanes get
closed.

Figure 5.6: DynaTraffic chart showing the convergence to a steady state

5.5 Related Work

DynaTraffic is not the only software that addresses dynamic systems.
The following section shortly reviews three exemplary programs.

Figure 5.7: Predator-prey model in Stella

Stella

Stella [44] is arguably the most popular educational software for mo-
deling and analyzing dynamic systems. Models in Stella are assembled

58 Chapter 5. DynaTraffic: Markov Chains and Analysis of Dynamic Systems

from different predefined graphical elements such as sources, sinks, and
different dependencies. Mathematically Stella is based on the model
of discrete differential equations. These equations are generated auto-
matically and made accessible beneath the graphic model layer.

Figure 5.7 shows a predator-prey model of lynxes and hares in Stella.
The populations of lynxes and hares change because old animals die
and young ones are born. Furthermore some hares die because lynxes
eat them and some lynxes starve if there are not enough hares to eat.
Such dependencies can easily be modeled with Stella and the resulting
curves are visualized with charts, as shown in figure 5.8.

Figure 5.8: Development of lynx and hare populations in Stella

Stella is a commercial tool for analyzing dynamic systems, based on
discrete differential equation models. In contrast, DynaTraffic uses time-
discrete Markov chain models for its analysis. Both tools are designed
for educational purposes, come with extensive teaching materials, and
allow a high level of interactivity.

Monopoly in the View of Mathematics

As many other board games, the popular game of monopoly can be ana-
lyzed by means of the Markov chains. The web-site of Bewersdorff [15]
contains an animation illustrating the probabilities to reach a certain
field after a certain number of steps in a monopoly game, see figure
5.9. This animation is a supplement to a book by the same author
[14] which gives a short introduction to Markov chains and discusses in

5.5. Related Work 59

detail how the game of monopoly can be modeled as a Markov chain.

Figure 5.9: The game of monopoly analyzed with a Markov chain

This example shows an interesting application of Markov chains. But
the presented animation offers only little interactivity according to the
taxonomy introduced in section 2.5.

Matrix Vector Multiplication Applet

There are many visualizations of matrix-vector multiplications freely
available online. Figure 5.10 shows as an example two screenshots of
an animated matrix-vector multiplication from the MathDemos project
[52]. Such visualizations support the teaching of matrix-vector multi-
plication as they allow a new dynamic view of the multiplication algo-
rithm.

Figure 5.10: Two screenshots of an animated matrix-vector multiplication

60 Chapter 5. DynaTraffic: Markov Chains and Analysis of Dynamic Systems

This applet is restricted to a symbolic representation of matrices and
vectors. A connection between the methods of linear algebra and the
description of dynamic systems is not established.

5.6 Conclusions

DynaTraffic is a new interactive learning environment offering the func-
tionality to learn and apply concepts of Markov chains by analyzing
a traffic system. There is a considerable number of mathematical
concepts and levels of abstraction behind the model of DynaTraffic.
Whereas they are all required for a complete understanding of the
mathematical model behind DynaTraffic, not all of them need to be
introduced formally in order to successfully use the software.

The software examples in the previous section illustrate the strength
of computer-aided learning environments like simulation, giving feed-
back, or animation of processes. The two free online tools presented
in the previous section expose a possible pitfall for the implementation
of a learning environment targeted at an introduction to an abstract
mathematical topic. Despite their animations, both tools offer no in-
teractivity. Students can only observe, they have no control of what is
happening. DynaTraffic in contrast has a high level of interactivity as
students can dynamically change many parameters.

DynaTraffic displays all the relevant information about the current
state of the system as graphs and in the form of matrices and vectors,
emphasizing correspondences between these views. An additional chart
shows how the system evolves over time. DynaTraffic allows a new
attractive access to Markov chains based on the real-word scenario of
traffic analysis.

6 On the Development of
Interactive Learning
Environments

When integrating a medium such as computers into teaching, a num-
ber of questions arise. A main pedagogic concern is the usefulness or
advantage compared to the use of other or no media. From an eco-
nomic point of view also the costs of development, maintenance, and
infrastructure requirements are relevant.

Since the 1970s, computer-aided interactive learning environments
were said to have had a big potential. Reality looks mostly different.
Many learning environments are restricted to “Drill & Practice”, and
they are hardly interactive. Others are for technical reasons – and de-
spite high development costs – not operational any more after a few
years. A sustainable development of interactive learning environments
has to accommodate at the same time school practice, rules of software
engineering, and knowledge of educational sciences. Such an interdisci-
plinary approach deliberately faces a “scientific fuzziness” and therefore
exposes itself to criticism from the communities of the individual sci-
entific domains.

In this chapter, we first give a historical review of the introduction
of different media in teaching and identify analogies among their use
in education. We then concentrate on computer-aided learning envi-
ronments and show what we might learn from the history of computer-
aided instruction. Finally, we present our engineering science approach
that stands the test in practise and introduce and illustrate our prag-
matic recommendations with examples from InfoTraffic.

6.1 Media in Education:
Expectations and Disappointments

Media play an important role in the history of teaching. As soon as
new means for storing, displaying, or broadcasting information become

62 Chapter 6. On the Development of Interactive Learning Environments

popular, possible applications for educational purposes are discussed.
We now analyze the use of the media radio, TV, and computer in
education and identify some analogies.

In the mid-1920s, the first institutions broadcasted school radio pro-
grams. The expectations towards the new medium were immense.
Wülser [84] writes:

Vorträge, Sprachkurse und Beratungen für fast alle Lebensla-
gen prägten von Beginn an die Programme, wie beispiels-
weise ein Blick in die Sendewoche vom 5. bis 11. Februar
1927 zeigt. Radio Zürich bot Kinder-, Jugend-, Schüler- und
Frauenstunden an, gab eine Englischlektion, liess den Vor-
tragsdienst der Volkshochschule zweimal sprechen und ver-
anstaltete einen bunten Strauss von Vorträgen wie “Klassische
und moderne Bildhauerei”, “Winterschnitt am Kernobst”, die
“Physik des Mondes” oder “Zürcher Verkehrsfragen”.

Initiatives to equip schools with receiver stations (similar to today’s
“schools go online” initiatives, see figure 6.1) accompanied these school
radio programs.

With the appearance of the visual medium TV, radio lost its fascina-
tion. School TV programs became popular and school radio programs
played only a marginal role. With the advent of computers in the 1970s
serious competition grew to school TV, which the boom of the Internet
later fortified. Educational software and learning environments in the
form of web-based applets up to edutainment systems were expected to
offer cost-effective, individualized, place and time independent learning
along with adaptive feedback. Meanwhile it is clear that this software
failed to meet many of the expectations. Clark [32] even claims that
“media will never influence learning”.

As Mattern [55] describes, the computer as a teacher triggered many
visions of futuristic scenarios for our information age. Mattern’s sur-
vey further quotes computer science professor Philip Agre from the
University of California in Los Angeles: “The universal online univer-
sity has been predicted in pretty much its currently hyped form for
almost forty years. And we see here the characteristic shortcomings of
these predictions: the lack of emphasis on education as socialization
into a professional culture, the desire to automate teachers completely
rather than providing teachers with advanced tools.”

6.1. Media in Education: Expectations and Disappointments 63

Figure 6.1: School goes radio. (Source: archive Swiss Radio DRS, Zürich)

Some parallels can be identified when considering the usage of the
three media radio, TV, and computer (including the Internet) for edu-
cational purposes:

Lack of Interactivity. Students find themselves too often in the role
of the passive consumer. For learning environments, interactivity
has to go beyond mere navigation. Students should have active
control over content, activities, and aspects of the representation.
Laurel [49] makes the point: “You either feel yourself to be parti-
cipating in the ongoing action of the representation or you don’t.”

It is interesting to note that TV companies today place more and
more emphasis on interactive TV such as video on demand or
tele-shopping for the sake of customer retention.

High Costs of Development, Short Half-life. For all three media,
the cost of development of educational materials is typically high.
This cost in general is only justified for topics whose expected rele-
vance outlasts a few years and topics that target a broad audience.

64 Chapter 6. On the Development of Interactive Learning Environments

For the development of professional radio or TV programs, ama-
teur skills are not sufficient. The same holds for computer-based
learning environments. Today, especially young people have high
expectations because of their lifestyle with permanent exposure
to media [41]. Edutainment produced under a lack of resources
quickly degenerates to “edupainment”.

Maintenance and update of radio-, TV-, or computer-based teach-
ing materials is more demanding than for classic printed materials.
In the case of computer-based learning environments, the short
development cycles of soft- and hardware turn teaching units too
often inoperable after a few years.

High Requirements to the Infrastructure. Paper and pen as well
as printed teaching materials can be used “just in time and any-
where”. The black board is as well a quite affordable, many times
usable and thus a long-living teaching help.

The cost is different with the use of radio, TV, and computers
including the Internet. All these media require notable invest-
ments in infrastructure. Handling this infrastructure is in general
not easy for instructors and accompanied by pitfalls. Computer-
based learning environments for example often require installing
additional software.

Assuming these parallels bear some universality, they should be kept
in mind when developing teaching materials using media. These obser-
vations might become valuable hints to avoid possible pitfalls for future
developments.

6.2 Computer Aided Instruction

In the following, we concentrate on the development of computer-aided
learning environments for computer science (CS) education. Concepts
from CS are obvious teaching topics for computer aided instruction
(CAI). First of all, formalization of facts from CS is often easy and
therefore feasible for a computer and secondly, CS teachers are familiar
with the use and maybe even with the development of software systems.

CS played a precursory role in using computers in teaching. Among
the early important projects are Seymour Papert’s activities around
the programming language LOGO for children or John Kemeny’s and

6.3. Innovation vs. Evaluation 65

Thomas Kurtz’s programming language BASIC. During the 1970s, PLA-
TO (Programmed Logic for Automated Teaching Operations) went one
step further and thousands of students used it for about two decades
on a regular basis.

The sometimes euphoric reports from the 1970s about the potential
of CAI differ only little from today’s reports. Nievergelt [58], who was
involved with the project PLATO, warned already 1975 of excessive
expectations, for example:

Restriction to a few fixed teaching strategies appeared to be
unreasonable. Programmed instruction and drill in particu-
lar, with their rigid control of the dialog by the program,
should yield to (or at least not exclude) modes where the
user controls the dialog, such as inquiry and simulation. [...]

Resources had been diluted into too many projects of insuf-
ficient size; CAI research and development should be carried
out by sizable groups of system designers and authors.

Nievergelt [58] finishes with the following recommendations:

I came to the conclusion that there is no systematic body of
knowledge which is of relevance to such a task. I am afraid
that this paper does not change this situation at all. The ad-
vice I might give to someone intent on building a computer-
based instructional system could be summed up in a few
phrases: get the best terminals you can pay for, good pro-
grammers, try everything out in actual instruction as soon as
possible, and follow your nose.

To some researchers these 30 years old recommendations from Nie-
vergelt might seem non-scientific, but they reflect the ongoing tension
between a scientific claim and a simultaneous impact on school practice.

6.3 Innovation vs. Evaluation

In Switzerland, a number of interactive learning environments for teach-
ing CS have been developed within the last few years. The programm-
able ladybug Kara [61, 63] for an introduction to programming is one
prominent example and won the European Software Award in 2002.
Other examples are GraphBench [21, 23] (NP-completeness and graph

66 Chapter 6. On the Development of Interactive Learning Environments

algorithms), Exorciser [77] (regular languages, context-free grammars,
and Markov algorithms) or Soekia (a didactic search engine). All these
learning environments along with teaching materials are freely available
on the educational server SwissEduc [3].

During the development of these environments, their authors have
repeatedly experienced the tension between “doing science” and edu-
cational innovation. From the point of view of educational research
these environments lack a scientifically justified evaluation of their im-
pact. But the complexity of interactive learning environments with its
many variables sets tight limits for a methodically supported evalua-
tion. Schulmeister [69] elaborates how educational researchers tend to
almost compulsive differentiation and control in their methodical de-
sign of studies to gain more generalizable results. According to [69]
this leads to artificial learning environments which are irrelevant for
instructional practice. For a deeper elaboration of this issue see section
7.1.

6.4 An Interdisciplinary
Engineering-Science Approach

Besides not being scientifically evaluated according to the standards of
educational research, the development of learning environments misses
the research aspect from the point of view of CS as an engineering
science. The curriculum of the schools determines the topics covered
which are well established and thus not a current area of research.
Furthermore the famous “as simple as possible” principle is true for
learning environments. The user interface should be restricted to the
minimum to allow fast familiarization with the system, thus preventing
a waste of time. Finally software architecture should be slim to allow
maintenance with scarce resources.

Developers of interactive learning environments thus face a dilemma:
The educational research community degenerates them almost inevit-
ably as not being scientific enough, even though these environments
might sustainably influence teaching and learning. In the eyes of the
computer science community, innovation is missing.

A possible approach to overcome this dilemma is to intentionally in-
tegrate the different communities involved. As presented in [5], the
development of computer-based learning environments requires the in-
terdisciplinary collaboration of three different groups of persons:

6.5. Pragmatic Recommendations 67

Experienced Instructors. Active instructors with a lot of school prac-
tice must identify and determine topics, exercises, and use.

Software Engineers. The efficient development of high-quality learn-
ing environments with a reasonably long half-life is an engineering
task and thus a software engineer must perform it.

Educational Researchers. Only educational science can offer basic
didactic concepts such as learning theories and the particular me-
thodology required to evaluate the effectiveness of interactive learn-
ing environments.

Computer Science:
Applied Research

Educational Science:
Fundamental Research

Teaching Reality:
Use in Practice

Research in Computer Science
Education, e.g., Development of
Interactive Learning Environments

Figure 6.2: Interdisciplinary research in computer science education

If in a development team one of the above groups is not represented,
development will most likely be suboptimal. Within the last decade, e-
learning systems have been developed for which there was no demand in
school practice. And when instructors or educational researchers acted
as programmers, this often resulted in user unfriendly and technically
only partly operable programs.

6.5 Pragmatic Recommendations

Good educational software and e-learning systems ideally satisfy three
superior criteria:

Didactic. The learning environment offers a didactic added value; stu-
dents learn more and better.

68 Chapter 6. On the Development of Interactive Learning Environments

Organizational. The learning environment creates organizational add-
ed value, instruction becomes “easier” for instructors and students.

Economic. The learning environment pays off economically, instruc-
tion becomes “cheaper” for educational institutions.

It is wrong to believe that all these goals can be achieved at the same
time substantially. However, we believe that our following pragmatic
recommendations are a step in the right direction. Where appropriate,
we shortly illustrate or comment each recommendation with examples
from the InfoTraffic project.

1. Is the computer needed at all? It makes no sense to develop
learning environments for topics that can equally well or even bet-
ter be taught without computers. Especially suited for learning
environments are complex topics, where individualization allows
accommodation of different pre-knowledge and learning rates. Pa-
per implementations of simple “Drill & Practice” exercises often
require less effort.

As elaborated in chapter 3, logic instruction is usually unnecessar-
ily abstract. LogicTraffic with its intuitive and everyday-life-based
approach for controlling traffic intersections offers a didactic added
value. Computers do a great job at allowing virtual-enactive rep-
resentations.

2. Is the topic to be taught still relevant in 10 years? The de-
velopment of interactive learning environments is in general ex-
pensive and thus only justifies for long-term relevant topics. This
point can be seen as a short-question version of fundamental ideas
in computer science as elaborated in section 2.1.

Logic accompanies us in everyday life and will as well be of crucial
importance for many areas of science in the future.

3. Use-cases: Is interactivity possible? A high level of interacti-
vity, for example following the taxonomy of Schulmeister [68], is
crucial for the quality of a computer-aided learning environment.
The sole reading of a text from the screen or the observation of an
animation alone does not trigger a learning process.

Not every topic is suitable for computer-aided human computer
interaction. It is recommended to collect example exercises already

6.5. Pragmatic Recommendations 69

in the specification phase. In the language of software engineering
these exercises represent use-cases for the program. These example
exercises allow to verify that the learning environment leads to real
interaction with the students and whether different cognitive levels
are addressed.

“Analyze this given traffic control. Which measures can reduce
the global waiting time?” was one example exercise for Queue-
Traffic. Such examples define the functionality that the learning
environment must provide.

Figure 6.3: Mock-up GUI of QueueTraffic

4. Paper-based prototyping. It is well known from software engine-
ering that an early inclusion of graphical user interface (GUI)
aspects substantially saves costs. In learning environments, GUIs
play a particularly important role. It is well worth to work on
paper as long as possible. In this phase besides paper other simple
tools such as sticky tape, post-its, scissors, and flip charts are
useful. Also presentation tools are suitable means for a quick
development and variation of GUIs. A good introduction to the
method “paper prototyping” can be found in [72].

Developing InfoTraffic we worked a long time with paper proto-
types only. One of the main advantages of paper-based prototyp-
ing: Reviewers more easily dare criticize and point out weaknesses
or question parts of the project. If a programmed prototype ex-
ists, the inhibition threshold for fundamental criticism is generally
high.

Figure 6.3 shows an early PowerPoint prototype of LogicTraffic. In

70 Chapter 6. On the Development of Interactive Learning Environments

this mock-up there was still a panel for a natural language descrip-
tion of formulas in PL. This option proved difficult to incorporate
while solving exercises with the paper prototype and was therefore
canceled.

5. Rapid prototyping. After having fixed use-cases and the GUI on
paper, a first prototype should be implemented. Developers should
show it as soon as possible to selected test persons – students and
instructors – which should use it experimentally.
Figure 6.4 shows the first publicly presented version of LogicTraf-
fic. The visual differences to the actual version (Figure 3.1) are
obvious. The internal program structure has changed a lot too,
and traffic situations are for example not produced with an image
file anymore, but automatically based on a XML file.

Figure 6.4: Older version of the learning environment LogicTraffic

6. Technical requirements: as simple as possible. The big deve-
lopment effort for a learning environment is only justified if the
software runs on different platforms and maintenance is ensured
for longer periods. This calls for simplicity and abandonment of
unnecessary functionality.
InfoTraffic is programmed in Java and needs only a Java runtime
environment (JRE); this is today available on most school com-
puters.

7. Early testing. As soon as possible, first trials in classes should
be performed. These trials force the development of concrete ex-
ercises and accompanying teaching materials and discover weak-

6.5. Pragmatic Recommendations 71

nesses. Students think and act often differently from what instruc-
tors imagine.

With LogicTraffic and QueueTraffic the testing showed that stu-
dents easily manage to use the programs without elaborate label-
ing of individual buttons. German speaking students further have
no difficulties with labels in English. DynaTraffic has not yet been
tested with a substantial group of students.

8. Economy at the user interface. The (graphical) user interface
of a learning environment should ideally be self-explanatory. After
initial testing, it is important to undertake a review process. Each
button, label, and other graphical element has to be critically
rethought: Is this element really needed and is it at the right
place?

Our experience shows that through this critical analysis up to half
of the original elements disappear. For professional development
of learning environments, also scientific findings from multimedia
learning should be taken into consideration, see for example the
different principles Mayer [56] presents.

9. Propagation of the learning environment. The work is not fi-
nished when there is a first stable version of the learning envi-
ronment. In order to have any impact on teaching, the learning
environment must be available to students and instructors, for
example through a popular web site. The possible channels for
propagation should be cleared up before the development begins.

Experience from the Swiss educational server swisseduc.ch shows
that free didactic materials (e.g., introductory presentation, user
instructions, exercise sheets, and didactic background informa-
tion) must accompany learning environments.

10. Securing maintenance and continuity. After release, i.e., af-
ter the transition to operation mode, maintenance has to be en-
sured as is common for projects in computer science. This includes
explicitly fixing any known bugs, the implementation of enhance-
ments, and adaption to new versions of operating systems and
other involved software. It is further important during this phase
to gain trust. Lack of time is one of the main problems in most in-
structors’ lives. An instructor therefore reasons carefully whether
or not he should invest effort in preparing a topic with a new

swisseduc.ch

72 Chapter 6. On the Development of Interactive Learning Environments

learning environment. He will have to assess whether the software
will still be available and operable within some years. Many in-
teractive learning environments are built in universities as student
activities and continuity is therefore not ensured. Here suitable
solutions should be preponed.

Usually the developers of software receive requests for enhance-
ment. For learning environments, the developers should be cau-
tious: The quality of a learning environment is not solely mea-
sured by the number of features provided. Frequent revisions and
enhancements make users uncertain. Typically related teaching
materials have to be updated too, which is a tedious job. In addi-
tion, enhancements typically increase the complexity of the pro-
gramming code and complicate its maintenance. “Less is more” is
therefore the general motto for enhancing learning environments.

6.6 Conclusions

History shows that the integration of media into teaching and the de-
velopment of high-quality interactive learning environments are tedious
and difficult tasks. For the success of a learning environment, the team-
work of experienced instructors, well-versed software engineers, and
specialists from educational science is indispensable and decisive.

The “usefulness” of computer-aided learning environments can hardly
be evaluated with classic scientific criteria based on educational science,
as will be elaborated in chapter 7. A promising pragmatic approach
is to bring together knowledge from different areas, and thus to have
partners with the willingness to cooperate interdisciplinarily. Such an
approach takes courage because one is exposed to the almost certain
criticism from the scientific community of educational science on the
one hand and of computer science on the other hand. The scientific
world might frown upon “Try everything out and follow your nose” from
Nievergelt [58] but this statement is a promising engineering science
approach for innovations in the field of e-learning.

7 Evaluation, Use and Experience

The presented work focuses on the development of interactive learn-
ing environments. InfoTraffic follows both an engineering science and a
design-based research approach. During the process of designing and
developing InfoTraffic we have gained insights that we can share. How-
ever, we did not evaluate InfoTraffic based on a classic experimental
study. From the perspective of educational science, grounded on hy-
potheses and systematic experiments, it might seem essential that a
doctoral project such as InfoTraffic provides a scientific evaluation of
the “usefulness” of its outcome, i.e., numbers expressing how much bet-
ter students learn the underlying topics, propositional logic, queuing
theory, and Markov chains. On the other hand, many recent publica-
tions [12, 28, 39, 64, 69] criticize this classic approach to a so-called
scientific evaluation by experiments. Schulmeister makes this point
very clear and states in his renowned book [69]:

There are thousands of reports by teachers on experiments in
school, mostly with inadequate setups, but with sophisticated
controlled test designs in part. Almost all of them report a
learning increase in the end. Again and again, one is tempted
as reader, if the subject is right, if the study agrees with one’s
own prejudices, to cite such results. But we do not need any
of those “careful studies of the impact of ... on ...”. What
we need are teachers and lecturers who are highly motivated,
who can fill their pupils and students with enthusiasm, and
programs that are interesting, thrilling, highly interactive,
and aesthetically designed.

In this chapter we elaborate on the difficulty of scientific evaluation
of interactive learning environments and present different approaches
to educational research. We then outline the engineering science and
design-based research approach InfoTraffic follows and explain why we
did not conduct a large-scale classic scientific evaluation. Finally we
summarize our experience with InfoTraffic and give an overview of the
use of the learning environments.

74 Chapter 7. Evaluation, Use and Experience

7.1 On the Difficulty of Scientific Evaluation of
Interactive Learning Environments

From the scientific tradition of natural science it is clear that the useful-
ness, advantage or added value of a new method, approach or product
must be measurable and reproducible in experiments. First a hypo-
thesis is stated and then tested against systematic observations to see
whether it holds or not. Hypotheses are stated by means of variables.
So in order to state reasonable hypotheses, the relevant variables in-
volved in the intended experiment must be identified. The complexity
of real learning and teaching situations with its many effective vari-
ables and their manifold interactions with even other variables sets
tight limits to such an experimental research. According to Reinmann
[64], this leads to the case that most comparisons of teaching methods
and teaching media show no significant results, and the few significant
results contradict each other.

According to Schulmeister [69], difficulties in generalizing statements
from evaluations regularly tempt methodologists into calling for further
differentiation and control in the methodical design. This leads to the
construction of utterly artificial learning environments, whose evidence
thus loses its validity for real life situations, i.e., these learning environ-
ments are meaningless for teaching practice. It is thus not surprising
that as Schulmeister [69] puts it, “the trivial nature of some results can
hardly be surpassed.”

In addition to the fundamental difficulty of scientific evaluation just
mentioned, another issue is the appreciation of different efforts by the
scientific community. As the title “Nur ’Forschung danach’? – Vom
faktischen und potentiellen Beitrag der Forschung zu alltagstauglichen
Innovationen beim E-Learning” of [64] suggests, Reinmann criticizes
that currently only “research afterwards” is tolerated where a new con-
cept or a new technology is only scientifically evaluated after it is de-
veloped and employed, and obviously no “science happens” during its
development. Reinmann further asks for the goals of educational re-
search in our society and whether this research should contribute to
innovations in education.

7.2. Approaches to Educational Research 75

7.2 Approaches to Educational Research

In recent years, many educational researchers [12, 28, 39, 64, 69] have
observed a lack of applications of research findings in the field of educa-
tion. This observation has started a large ongoing international debate,
and some researchers like Reinmann [64] even speak of a crisis in inno-
vation in (traditional) educational research. This discussion is not over
yet, but so far it has certainly been helpful in fleshing out, comparing
and discussing different approaches to educational research. In this sec-
tion we summarize different approaches to the hard-to-do-science that
educational researchers according to Berliner [12] do.

Following Reinmann [64] and Fischer et al. [39], we use a model by
Stokes [74] to illustrate and compare different approaches to educa-
tional research. The quadrant model of scientific research by Stokes
distinguishes the two dimensions “quest for fundamental understand-
ing?” and “consideration of use?” which in this simple model can
both only be answered with yes or no, see figure 7.1. To three of the
resulting quadrants, Stokes assigns well-know scientific personalities as
typical representatives, namely Niels Bohr, Louis Pasteur, and Thomas
Edison. The bottom left quadrant remains empty.

Nils
Bohr

Consideration of use?

Quest for
fundamental

understanding?

Louis
Pasteur

Thomas
Edison

No Yes

No

Yes

Figure 7.1: The quadrant model of scientific research by Stokes

Stokes’ model serves as a reference for different approaches to doing
research and to locate three proposed approaches to educational re-
search. As an outcome of the international discussion in educational
research described above, several solutions and reactions have been
proposed and discussed. Below we list the three main approaches to
educational research that according to [39, 64] emerged from this dis-
cussion.

76 Chapter 7. Evaluation, Use and Experience

Pure Basic Research. A first direction states that scientific stan-
dards should be applied more strictly in educational research and
experiments should be conducted more rigorously. This approach
claims to lead to new, replicable and generalizable insights that
can be accumulated and directly transferred to practice. This ap-
proach can be located in the quadrant of Bohr in Stokes’ model
and claims that applicability will follow automatically if new in-
sights are generated.

Use-Inspired Basic Research. A second direction emphasizes that
in research the aspect of use is neglected, i.e., educational sci-
ence produces results, but not the ones practice needs. This line
of reasoning has led for example to the approach of design-based
research (DBR), which is located in the quadrant of Pasteur in
Stokes’ model. DBR is, according to Fischer et al. [39], a mixture
of empirical-pedagogic research and the development of teaching
and learning environments in a practical context, e.g., in the con-
text of teaching in a classroom. Similar to DBR is the integrative
research approach of Stark and Mandl as described in [51].

Engineering-Science-Inspired Research A third direction empha-
sizes an engineering science approach. According to Burkhardt
and Schoenfeld [28], “the engineering approach to research is di-
rectly concerned with practical impact – understanding how the
world works and helping it ’to work better’ by designing and sys-
tematically developing high-quality solutions to practical prob-
lems.” An engineering science approach is similar to DBR but
requires a more radical rethinking, as the underlying logic ex-
tends from “understanding how the world works” to “helping it
to work better” in the idealized and simplified words of Burkhardt
and Schoenfeld just mentioned. The engineering approach is like
use-inspired basic research located in the quadrant of Pasteur in
Stokes’ model and could according to Reinmann [64] be called
fundamental-oriented applied research (grundlagenorientierte An-
wendungsforschung), as it mainly focuses on developing new appli-
cations but at the same time seeks for basic and general knowledge.

There is no consensus yet in the international discussion on which
approach is best. Reinmann [64] concludes that educational science as
a hard-to-do-science cannot follow only one research tradition. Rein-

7.3. The Approach of InfoTraffic 77

mann is further convinced that engineering science as a new pillar for
educational science will lead to new impulses and innovations.

7.3 The Approach of InfoTraffic

InfoTraffic follows both an engineering-science-inspired and a design-
based research approach. Our interdisciplinary engineering science ap-
proach is described in section 6.4. Table 7.1 lists the five characteristics
for good DBR as proposed by the design-based research collective [37]
with links of each characteristic to InfoTraffic.

Characteristic Link to InfoTraffic
The central goals of designing learning en-
vironments and developing theories or “pro-
totheories” of learning are intertwined.

See contributions of this thesis in
section 1.4.

Development and research take place through
continuous cycles of design, enactment, anal-
ysis, and redesign.

See our pragmatic recommenda-
tions in section 6.5, especially
points 3, 4, 5, 7, and 10.

Research on designs must lead to sharable
theories that help communicate relevant im-
plications to practitioners and other educa-
tional designers.

See the contributions of this the-
sis in section 1.4 and our prag-
matic recommendations in sec-
tion 6.5.

Research must account for how designs func-
tion in authentic settings. It must not only
document success or failure but also focus on
interactions that refine our understanding of
the learning issues involved.

See the report of uses of InfoTraf-
fic in section 7.4.

The development of such accounts relies on
methods that can document and connect pro-
cesses of enactment to outcomes of interest.

See the contributions of this the-
sis in section 1.4 and the didactic
concepts in chapter 2.

Table 7.1: InfoTraffic and the five characteristics for good design-based research

Intentionally we have not evaluated the InfoTraffic learning environ-
ments with traditional experiments. There are two reasons for this deci-
sion: Firstly severe systematic difficulties and problems with traditional
experimental evaluation exist, i.e., conducting traditional experiments
is a difficult and demanding task. Secondly, in addition to developing
and iteratively improving the learning environments, conducting such
experiments requires resources out of the scope of one single doctoral
project.

We have applied an iterative process for the design, development and
analysis of InfoTraffic, corresponding to the second characteristic for

78 Chapter 7. Evaluation, Use and Experience

good design-based research in table 7.1. Early paper-based prototypes
of the learning environments, possible use-cases and types of exercises
were analyzed and discussed. As soon as a first prototype was available,
we conducted usability tests with individual users. Through this pro-
cess the software and the concepts of InfoTraffic evolved and improved
constantly, as is typically the case in engineering science.

The goal of InfoTraffic was to have an impact in teaching practice.
Since engineering science is directly concerned with practical impact,
it was obvious for us to choose such an approach for our research. As
Burkhardt and Schoenfeld [28] put it: “The research-based develop-
ment of tools and processes for use by practitioners, common in other
applied fields, is largely missing in education.” InfoTraffic contributes to
research-based development of tools for practitioners, i.e., instructors.

7.4 InfoTraffic: Uses and Feedback

Our interdisciplinary engineering science approach requires and includes
knowledge from different areas. The working concepts and designs
should therefore be presented to different groups in order to get feed-
back and impulses. This section summarizes occasions where the In-
foTraffic environments were used with or presented to larger audience.
A detailed chronological list of uses and presentation can be found in
appendix A. Note that we here exclusively consider uses by the authors,
even though the download statistics in the next section suggest active
uses by many other users.

InfoTraffic on SwissEduc

SwissEduc (www.swisseduc.ch) is a non-commercial, web-based and
free offer of teaching materials for secondary education. The topics
covered by one of Switzerland’s most popular educational server in-
clude among others Chemistry, Latin, English, Physics, Geography,
and Computer Science. Since May 2006 LogicTraffic has been available
on SwissEduc along with an introductory presentation and exercises
with sample solutions, see figure 7.2. QueueTraffic has been available
since July 2006, and DynaTraffic since September 2007.

Table 7.2 shows access and download numbers for InfoTraffic on Swiss-
Educ. Note that these numbers exclude web robots as well as downloads
from within ETH Zurich. Further many files might be shared internally

www.swisseduc.ch

7.4. InfoTraffic: Uses and Feedback 79

Figure 7.2: Teaching materials accompanying LogicTraffic on SwissEduc

in schools, thus leaving only one download in our statistics for use
by potentially larger number of users. The numbers show that many
people are interested in InfoTraffic.

Page views 3012
Downloads of InfoTraffic 108
Different visiting hosts 422

Table 7.2: InfoTraffic statistics on SwissEduc for September 2007

Secondary Education - High School

Early classroom trials force the development of practical assignments
and accompanying teaching materials and thus help discovering weak-
nesses. Students use software often differently from what developers
and instructors fancy. The student’s feedback at these early trials was
collected, analyzed, and discussed in the developer team. We used
and tested LogicTraffic and QueueTraffic as soon as possible in class.
DynaTraffic is also scheduled for class use on a broad basis.

Tertiary Education - Use in Academia

InfoTraffic can also be used in education at university level. In the
winter semester 2006/07 and in the autumn semester 2007 LogicTraffic

80 Chapter 7. Evaluation, Use and Experience

was part of the compulsory logic course for first year computer science
students at ETH Zurich. The students were given an introduction to
LogicTraffic and had to solve exercises using LogicTraffic. The students’
feedback were all positive.

Teacher Education

As described in chapter 6 one of the three groups involved in our inter-
disciplinary engineering science approach are practitioners, i.e., teach-
ers and instructors. So we appreciated the possibility to receive their
valuable feedback at various occasions.

Research Presentations

We presented the concepts and prototypes of InfoTraffic several times
to the research community in computer science education. At all these
occasions, we received valuable feedback and various design issues and
development decisions were discussed.

Anecdotal Evidence

To round off this chapter, we here quote some exemplary feedback.
More collected feedback can be found online at [3].

“Logik ist cool!” (Spontaneous statement of a high school student after
having attended an introductory presentation to LogicTraffic.)

“Poissonverteilung ist viel zufälliger, nicht wie bei einem Fliessband,
wenn jede Sekunde ein Teil aus der Maschine kommt.” (High school
student after having solved exercises with QueueTraffic.)

“Ich möchte einfach gratulieren zur Software LogicTraffic. [...] Mir
persönlich hat das Programm wirklich gut gefallen, und ich habe damit
im Bereich KNF, DNF usw. viel gelernt. Die Grafik finde ich auch
super, und das ganze Interface ist wirklich total user-friendly. Sehr
nützlich finde ich auch, die verschiedenen Formeln in Files speichern
zu können.” (CS student at ETH Zürich after having solved exercises
with the help of LogicTraffic.)

“Ende März konnte ich Ihren Vortrag in Dresden erleben und habe
fast den gesamten Inhalt in meinen Informatikunterricht integriert, das
heisst, ich habe die Schüler (13-19 Jahre) auf die Möglichkeiten/Grenzen

7.5. Conclusions 81

von Simulationsprozessen hingewiesen und Ihre Simulationen testen
lassen.” (High school teacher after using QueueTraffic.)

“We met this summer at ITiCSE in Dundee. As I mentioned then,
I liked your work on the teaching tools and I’m using LogicTraffic in
the classroom this semester. [...] I really like the interactive style of
LogicTraffic and it works well to let the student experiment with the
models. [...] I really believe that interactive learning with devices such
as LogicTraffic is the best way for today’s generation of students to
learn. They certainly do not learn from traditional lectures, at least in
my experience.” (American university professor.)

7.5 Conclusions

The focus of our work is the development of state-of-the-art interactive
learning environments following an an engineering science and design-
based research approach. InfoTraffic contributes to design-based de-
velopment of educational tools for practitioners. The learning envi-
ronments are readily available for use in class. Our interdisciplinary
engineering science approach is described in section 6.4

The InfoTraffic learning environments intentionally were not evalu-
ated with traditional learning experiments for two reasons: Firstly and
as elaborated in section 7.1, conducting such evaluation is difficult and
severe systematic criticism of this kind of evaluation exists, for example
due to the large numbers of parameters influencing classroom teaching.
– To use the clear words of Schulmeister [69] again: “we do not need
any of those ’careful studies of the impact of ... on ...’.” Secondly,
conducting such experiments was out of the scope of a doctoral project
in computer science.

The InfoTraffic interactive learning environments we have presented
were iteratively tested on many occasions and accordingly improved.
The current spread of InfoTraffic and the feedback we have received
during this project lead us to conclude that InfoTraffic has reached its
goals and found its way to teaching practice.

82 Chapter 7. Evaluation, Use and Experience

8 Results and Outlook

The goal of this thesis was to gain insight into how to teach abstract
topics and into the development of high-quality interactive learning en-
vironments. This goal was reached by following an interdisciplinary
engineering science approach and combining knowledge from teaching
practice, educational science, computer science education and software
engineering. The three new interactive learning environments Logic-
Traffic, QueueTraffic, and DynaTraffic have been used and presented
on several occasions so far. They are readily available for use at
http://www.swisseduc.ch/compscience/infotraffic/ along with
teaching materials.

Much research in computer science education traditionally focuses
on classic natural scientific evaluation. As elaborated in chapter 7,
Schulmeister [69] and others question the habit of putting the focus
in educational research unilaterally on this kind of evaluation. Other
approaches to educational research have also been discussed lately. Info-
Traffic follows both an engineering-science-inspired and a design-based
research approach.

A next reasonable development step for the InfoTraffic interactive
learning environments might be to expand them for self study purposes.
Such enhancement might include the integration into a suitable self
study learning environment or an adequate blended learning framework
as well as the development of automated self tests.

The current spread of the InfoTraffic environments and the feedback
we have received so far lead us to conclude that InfoTraffic has found its
way into teaching practice. We are convinced that the insights gained
during the InfoTraffic project are of some help to other developers and
that our findings as well as our interactive learning environments will
spread further.

http://www.swisseduc.ch/compscience/infotraffic/

84 Chapter 8. Results and Outlook

A Uses and Presentations of
InfoTraffic

As mentioned in section 7.4, this appendix chronologically lists occa-
sions where the InfoTraffic environments were used with or presented to
larger audience, sorted by target groups. Note that we here exclusively
consider uses by the authors.

Secondary Education - High School

• 19.01.2006: First use of LogicTraffic in two high school classes in
Zurich.

• 15.03.2006: Use of LogicTraffic in a class of visiting female high
school students at ETH Zurich.

• 05.07.2006: First use of QueueTraffic in a high school class in
Baden.

• 30.08.2006: Use of QueueTraffic in a class of visiting female high
school students at ETH Zurich.

• 26.10.2006: Use of LogicTraffic in a visiting high school class at
ETH Zurich.

• 02.11.2006: Use of LogicTraffic in a visiting high school class at
ETH Zurich.

• 14.03.2007: Use of QueueTraffic in a visiting class of female high
school students at ETH Zurich.

Teacher Education

• 29.10.2005: Discovery learning workshop using LogicTraffic for
high school teachers in Hamburg.

• 13.12.2005: LogicTraffic workshop in a computer science didactics
class at the pedagogical university of Bern.

86 Appendix A. Uses and Presentations of InfoTraffic

• 02.03.2007: Presentation of InfoTraffic in a continuing education
course at the pedagogical institute of Linz.

• 31.03.2007: Presentation and use in a workshop of LogicTraffic and
QueueTraffic at the annually “Absolvententreffen der Informatik-
lehrer” at TU Dresden.

Research Presentations

• 29.09.2005: First public demo of LogicTraffic during a presentation
at the GI-INFOS’05 conference in Dresden, Germany.

• 21.08.2006: Presentation of LogicTraffic and QueueTraffic at the
international doctoral colloquium of CS didactics in Paderborn,
Germany.

• 23.08.2006: Presentation of LogicTraffic and QueueTraffic in the
research group for “algorithms, data structures, and applications”
at ETH Zurich.

• 07.03.2007: Presentation of InfoTraffic in the doctoral consortium
at the ACM SIGCSE technical symposium in Covington KY, USA.

• 08.03.2007: Presentation of LogicTraffic and QueueTraffic at the
ACM SIGCSE technical symposium in Covington, Kentucky KY,
USA.

• 31.03.2007: Presentation of InfoTraffic at the international doc-
toral colloquium of CS didactics at ETH Zurich.

• 27.06.2007: Demonstration of InfoTraffic at the ACM ITiCSE con-
ference in Dundee, Scotland.

B System Design and
Implementation Issues

This appendix covers details of the implementation of InfoTraffic. We
first give an overview of the system and then present selected interesting
algorithms. Finally we show some of the data formats of InfoTraffic and
list software libraries we have used.

B.1 Acknowledgements

The author of this thesis was the project leader and wrote most of
the LogicTraffic code. QueueTraffic was mainly implemented by Nicolas
Born as part of his master’s thesis [19]. DynaTraffic was implemented
by Anna-Nina Simonetto as part of her master’s thesis [71]. The fol-
lowing students additionally contributed to InfoTraffic as part of their
semester’s thesis: Marc Bühler, Hasan Karahan, Anna-Nina Simonetto,
and Xiaoping Yin.

Figure B.1: The start window of InfoTraffic

88 Appendix B. System Design and Implementation Issues

Figure B.1 shows the start window of InfoTraffic where the user can
choose which of the three environments to start by clicking on the
corresponding image.

B.2 Overall System Architecture

InfoTraffic is written in the programming language Java. Java was
chosen because it is platform independent, an important issue for use
in schools. The software consists of about 26000 lines of code split up
in 186 classes. These classes are grouped again into 36 packages (figure
B.2).

ch.wherever.infoTraffic

logic dynaqueue

util

model

gui

simulation

model

gui

util

simulation

model

gui

graphbench

util

Figure B.2: The first three levels of the InfoTraffic package hierarchy

When InfoTraffic is started, the main method of the class ch.wherever.
infoTraffic.InfoTrafficApplication is invoked. According to the
user’s choice, one of the three subprograms is started by invoking the
main method of one of the following classes:

• ch.wherever.infoTraffic.logic.LogicTraffic

• ch.wherever.infoTraffic.queue.QueueTraffic

• ch.wherever.infoTraffic.dyna.DynaTraffic

The three programs are placed in different packages, as can be seen
in figure B.2. LogicTraffic and QueueTraffic share code to load, display,
and simulate traffic situations, as they use the same data format for

ch.wherever.infoTraffic.InfoTrafficApplication
ch.wherever.infoTraffic.InfoTrafficApplication

B.2. Overall System Architecture 89

specifying these traffic situations (see section B.4). The two programs
also share some traffic situation files, i.e., they display traffic intersec-
tions based on the same situation data. DynaTraffic does not share code
with LogicTraffic and QueueTraffic.

InfoTraffic uses the Java Swing toolkit and follows in general the
Model-View-Controller (MVC) and Observer design pattern [40]. Fig-
ure B.3 shows an UML class diagram of LogicTraffic implementing
the MVC design pattern. QueueTraffic and DynaTraffic use analogous
classes.

ViewModel

…logic.model.PropositionalModel

variables:String[]
values:String[]
…

getValues():String[]
setValues(String[]):void
getVariables():String[]
setVariables(String[]):void
setCurrentConfig(boolean[]):void
getCurrentConfig():boolean[]
…

…FormulaModel

…SituationModel

…TruthTableModel …logic.gui.TruthTablePanel

…logic.gui.FormulaPanel

…logic.gui.SituationPanel

Controller

…logic.gui.LogicControl

Figure B.3: LogicTraffic implementing the Model-View-Controller design pattern

For learning environments the visual appearance is important. We
followed the design principles as presented by Mayer [56], especially
the redundancy principle, the spatial contiguity principle, and the co-
herence principle when designing the graphical user interface (GUI) of
InfoTraffic.

InfoTraffic configuration is implemented with the help of the java.
util.Properties framework. Parameters and settings such as colors
and sizes of GUI elements, the default situation at startup, or the simu-
lation speed are stored in so-called property files. General properties
of InfoTraffic like the language or the version of the program are stored
in the main property file data/logicConfig.properties.

InfoTraffic currently provides a German and an English version. All
language specific elements like labels or messages are specified in pro-

java.util.Properties
java.util.Properties

90 Appendix B. System Design and Implementation Issues

perty files. The English texts for QueueTraffic are for example stored
in the property file queue/util/lang/lang_en.properties and the
German texts accordingly in lang_de.properties. Providing addi-
tional language only requires the creation of the according language
files, e.g., lang_es.properties for Spanish and to change the Lan-
guage property in the main property file to es. No modification and
recompilation of code is needed to support additional languages.

B.3 Selected Algorithms

In this section we present selected interesting algorithms of the Info-
Traffic environments in pseudo code.

Choice of Formulas in LogicTraffic

As described in section 3.3, LogicTraffic implements the Quine-McClus-
key algorithm [46] to obtain optimized formulas in conjunctive normal
form (CNF) and disjunctive normal form (DNF). To clarify how the
Implication and Simplest forms are generated, we here present their
generation algorithms.

Generation of Implication Formula

formula = DNF as provided by Quine-McCluskey algorithm
sort clauses in ascending order by number of literals
foreach two clauses A, B of the form A AND B of formula

replace A AND B with (NOT A) IMPLICATION B
end foreach
foreach clause A of the form NOT(A)

eliminate NOT outside the clause by applying De Morgan’s law
end foreach

Generation of Simplest Formula

foreach formula provided by the logictraffic
sumOpsVarFormula = #literals + #operators in clauses +

2*(#operators between clauses)
end foreach
simplestFormula = formula with min(sumOpsVarFormula)

B.3. Selected Algorithms 91

Calculation of Parameters in QueueTraffic Simulations

The calculation of the key parameters of queuing theory in QueueTraffic
is done according to the following formulas. The other parameters are
calculated analogously, see [19] for details.

Calculation of the Arrival Rate

cars = #cars arrived within the last round
arrivalRate = cars / roundTime

Calculation of the Average Waiting Time

time = sum of waiting times of all cars on lane
averageWaitingTime = time / #cars on lane

The Upper Limit Mode in DynaTraffic

The algorithms below describe the action when the upper limit mode
in DynaTraffic is invoked. For details see [71].

Set a Lane Closed in Upper Limit Mode

foreach column of transitionMatrix except laneToLock
forach row of column

if (row == laneToLock) then
probability := 0

end if
end foreach

end foreach
foreach column of transitionMatrix except laneToLock

columnSum = sum of probabilities of this column
if (columnSum != 1.0) then

ratio = 1 / columnSum
foreach element of column

probability = currentProbability * ratio
end foreach

end if
if (columnSum == 0.0) then

cycleEdge = 1.0
end if

end foreach

Reopen a Lane in Upper Limit Mode

retrieve original row of transitionmatrix(laneToUnLock)
foreach column of transitionMatrix except laneToUnlock

92 Appendix B. System Design and Implementation Issues

foreach element of column
probability = probability * ((1 - probability of cyclic edge)

/ sum of all edges except cyclic edge)
end foreach

end foreach

B.4 Data Formats

The different traffic situations of InfoTraffic are specified and stored in
XML files. We here list the two most relevant XML specification along
with an example of each one.

Traffic Situation Format for LogicTraffic and QueueTraffic

LogicTraffic and QueueTraffic share the same data format for the speci-
fication of their traffic situations. In LogicTraffic traffic situations are
displayed in the size specified in the XML file. In QueueTraffic the traffic
situations are scaled down by factor of three, centered and extended
with straight lanes and green space, respectively. The following Docu-
ment Type Definition (DTD) specifies the format of traffic situations
in LogicTraffic and QueueTraffic.

DTD for Traffic Situations

<?xml version="1.0" encoding="UTF-8"?>
<!ELEMENT trafficsimulation (situationName, trafficLogic)>
<!ELEMENT situationName (#PCDATA)>
<!ELEMENT trafficLogic (tracks, roadsides, cars?)>
<!ELEMENT tracks (track*)>
<!ELEMENT track (sections, stopPoint, direction, trafficLight)>
<!ATTLIST track name ID #REQUIRED>
<!ELEMENT stopPoint EMPTY>
<!ATTLIST stopPoint x NMTOKEN #REQUIRED y NMTOKEN #REQUIRED>
<!ELEMENT direction EMPTY>
<!ATTLIST direction

start (north | south | east | west) #REQUIRED
end (north | south | east | west) #REQUIRED

>
<!ELEMENT trafficLight EMPTY>
<!ATTLIST trafficLight

x CDATA #REQUIRED
y CDATA #REQUIRED

>
<!ELEMENT cars (car*)>
<!ELEMENT roadsides (roadside*)>

B.4. Data Formats 93

<!ELEMENT roadside (shape)>
<!ELEMENT car (center, length, width, speed?, color?)>
<!ATTLIST car

carid ID #REQUIRED
>
<!ELEMENT center (#PCDATA)>
<!ELEMENT length (#PCDATA)>
<!ELEMENT width (#PCDATA)>
<!ELEMENT speed (#PCDATA)>
<!ELEMENT color (#PCDATA)>
<!ELEMENT sections (shape+)>
<!ELEMENT shape EMPTY>
<!ATTLIST shape

type (line | curve) #REQUIRED
x1 CDATA #IMPLIED
y1 CDATA #IMPLIED
x2 CDATA #IMPLIED
y2 CDATA #IMPLIED
x CDATA #IMPLIED
y CDATA #IMPLIED
radius CDATA #IMPLIED
startAngle CDATA #IMPLIED
endAngle CDATA #IMPLIED

>

An Example File

The following XML file specifies situation 3 in LogicTraffic and Queue-
Traffic, see figure B.4.

<?xml version="1.0" encoding="UTF-8"?>
<trafficSituation>

<situationName>Situation 3</situationName>
<situationElement>

<tracks>
<track name="A">

<sections>
<shape type="line" x1="0" y1="152" x2="400" y2="152"/>

</sections>
<stopPoint x="140" y="152"></stopPoint>
<direction start="west" end="east"/>
<trafficLight x="90" y="210"/>

</track>
<track name="B">

<sections>
<shape type="line" x1="0" y1="176" x2="146" y2="176"/>
<shape type="curve" x="146" y="224" radius="48"

startAngle="0" endAngle="270"/>

94 Appendix B. System Design and Implementation Issues

<shape type="line" x1="194" y1="220" x2="194" y2="300"/>
</sections>
<stopPoint x="140" y="176"/>
<direction start="west" end="south"/>
<trafficLight x="90" y="240"/>

</track>
<track name="C">

<sections>
<shape type="line" x1="400" y1="104" x2="260" y2="104"/>
<shape type="curve" x="260" y="200" radius="96"

startAngle="180" endAngle="270"/>
<shape type="line" x1="164" y1="200" x2="164" y2="300"/>

</sections>
<stopPoint x="260" y="104"></stopPoint>
<direction start="east" end="south"/>
<trafficLight x="270" y="50"/>

</track>
</tracks>
<roadsides>

<roadside>
<shape type="line" x1="0" y1="80" x2="400" y2="80"/>

</roadside>
<roadside>

<shape type="line" x1="0" y1="200" x2="140" y2="200"/>
<shape type="line" x1="140" y1="200" x2="140" y2="300"/>

</roadside>
<roadside>

<shape type="line" x1="260" y1="200" x2="400" y2="200"/>
<shape type="line" x1="260" y1="200" x2="260" y2="300"/>

</roadside>
</roadsides>

</situationElement>
</trafficSituation>

Figure B.4: Situation 3 as displayed in LogicTraffic (left) and QueueTraffic (right)

B.4. Data Formats 95

Graph Format for DynaTraffic

The following XML schema specifies the format of graphs in DynaTraf-
fic. It is an extension of the graph XML schema of GraphBench [22].

XML Schema for Graphs in DynaTraffic

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<xsd:complexType name="XmlNode">

<xsd:attribute name="node_id" type="xsd:int" use="required"/>
<xsd:attribute name="index" type="xsd:int" use="required"/>
<xsd:attribute name="type" type="xsd:int"/>
<xsd:attribute name="value" type="xsd:double"/>
<xsd:attribute name="name" type="xsd:string"/>
<xsd:attribute name="x" type="xsd:int" use="required"/>
<xsd:attribute name="y" type="xsd:int" use="required"/>

</xsd:complexType>

<xsd:complexType name="XmlEdge">
<xsd:attribute name="edge_id" type="xsd:int" use="required"/>
<xsd:attribute name="index" type="xsd:int" use="required"/>
<xsd:attribute name="type" type="xsd:int"/>
<xsd:attribute name="hasSibling" type="xsd:boolean"

use="required"/>
<xsd:attribute name="value" type="xsd:double"/>
<xsd:attribute name="from" type="xsd:int" use="required"/>
<xsd:attribute name="to" type="xsd:int" use="required"/>
<xsd:attribute name="cycleType" type="xsd:int"/>
<xsd:attribute name="color" type="xsd:int"/>
<xsd:attribute name="name" type="xsd:string"/>
<xsd:attribute name="threshold" type="xsd:int"/>

</xsd:complexType>

<xsd:complexType name="XmlGraph">
<xsd:sequence>
<xsd:element name="Node" type="XmlNode" minOccurs="1"

maxOccurs="unbounded"/>
<xsd:element name="Edge" type="XmlEdge" minOccurs="0"

maxOccurs="unbounded"/>
</xsd:sequence>
<xsd:attribute name="type" type="xsd:string" use="required"/>
<xsd:attribute name="index" type="xsd:int" use="required"/>
<xsd:attribute name="graph_id" type="xsd:int" use="required"/>
<xsd:attribute name="value" type="xsd:double"/>

</xsd:complexType>
</xsd:schema>

96 Appendix B. System Design and Implementation Issues

An Example File

The following XML file specifies situation 1 in DynaTraffic, see figure
B.5.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<xmlGraph value="0.0" type="standard" index="1" graph_id="1">

<Node y="150" x="100" type="1" index="0" name="0" node_id="0"/>
<Node y="150" x="400" type="1" index="1" name="1" node_id="1"/>
<Edge value="100.0" type="1" to="0" index="0" from="1"

name="A" edge_id="0" hasSibling="true"/>
<Edge value="0.0" type="1" to="1" index="1" from="0"

name="B" edge_id="1" hasSibling="true"/>
</xmlGraph>

Figure B.5: Situation 1 as displayed in DynaTraffic

B.5 Used Libraries

InfoTraffic employs software libraries and tools that are not part of the
standard Java JDK distribution. To implement the LogicTraffic propo-
sitional logic parser we applied the JavaCC [33] parser/scanner genera-
tor. QueueTraffic uses the TableLayout [34] layout manager. DynaTraf-
fic finally utilizes and extends the GraphBench API [22] for handling
graphs and the Jama [54] Java matrix package for handling matrices
and vectors.

Bibliography

[1] J. R. Anderson, L. M. Reder, and H. A. Simon. Situated Learning
and Education. Educational Researcher, 25(4):5–11, Mai 1996.

[2] R. Arnold. Demonstration abstract: Introducing Propositional
Logic and Queueing Theory with the InfoTraffic Interactive Learn-
ing Environments. In Proceedings of ACM ITiCSE 2007, Dundee,
Scotland, June 2007.

[3] R. Arnold. InfoTraffic: Interactive Learning Environments, with
Teaching Material, German Edition. http://swisseduc.ch/
informatik/infotraffic, last visited September 2007.

[4] R. Arnold and W. Hartmann. LogicTraffic – Logik in der All-
gemeinbildung. Hauptbeitrag Informatik-Spektrum, 30(1):19–26, 2
2007.

[5] R. Arnold and W. Hartmann. Pragmatische Empfehlungen zur
Entwicklung von interaktiven Lernumgebungen. In Proceedings
INFOS 2007, 12. GI-Fachtagung Informatik und Schule, Siegen,
Germany, September 2007.

[6] R. Arnold, W. Hartmann, and R. Reichert. Entdeckendes Ler-
nen im Informatik-Unterricht. In Proceedings of INFOS 2005, 11.
GI-Fachtagung Informatik und Schule, pages 197–205, Dresden,
Germany, September 2005.

[7] R. Arnold, M. Langheinrich, and W. Hartmann. InfoTraffic -
Teaching Important Concepts of Computer Science and Math
through Real-World Examples. In Proceedings ACM SIGCSE
Technical Symposium, pages 105–109, Covington, Kentucky, USA,
March 2007.

[8] D. P. Ausubel. The use of advance organizers in the learning and
retention of meaningful verbal material. Journal of Educational
Psychology, 51:267–272, 1960.

http://swisseduc.ch/informatik/infotraffic
http://swisseduc.ch/informatik/infotraffic

98 Bibliography

[9] J. Barwise and J. Etchemendy. Language, Proof and Logic. CSLI
Publications, Stanford, 1999.

[10] M. Ben-Ari. Constructivism in computer science education. In
SIGCSE ’98: Proceedings of the twenty-ninth SIGCSE technical
symposium on Computer science education, pages 257–261, New
York, NY, USA, 1998. ACM Press.

[11] G. A. Berg. The Big Questions. International Journal on E-
Learning, 1(2):5–6, 2002.

[12] D.C. Berliner. Educational Research: The Hardest Science of All.
Educational Researcher, 31(8):18–20, 2002.

[13] D. Bertsekas and R. Gallager. Data Networks, second edition.
Prentice-Hall Int., New Jersey, 1992.

[14] J. Bewersdorff. Glück, Logik und Bluff. Mathematik im Spiel –
Methoden, Ergebnisse und Grenzen. Vieweg, Wiesbaden, 1998.

[15] J. Bewersdorff. Monopoly im Blickwinkel der Mathematik. http:
//www.bewersdorff-online.de/monopoly/, last visited Septem-
ber 2007.

[16] D. A. Bligh. What is the Use of Lectures? Penguin Books, Har-
mondsworth, England, 1972.

[17] B. S. Bloom, M. B. Engelhart, E. J. Furst, W. H. Hill, and D. R.
Kratwohl. Taxonomy of educational objectives. Handbook 1: The
cognitive domain. Longsmans Green, London, 1956.

[18] A. Blumstengel. Entwicklung hypermedialer Lernsysteme. Wis-
senschaftlicher Verlag, Berlin, 1998.

[19] N. Born. QueueTraffic – Eine Lernumgebung rund um die
Warteschlangentheorie. Masterarbeit ETH Zürich, 2006.

[20] B. S. Borowski. Truth Table Constructor Applet. http://www.
brian-borowski.com/Truth/TruthTableConstructor.html,
last visited September 2007.

[21] M. Brändle. GraphBench: Exploring the Limits of Complexity with
Educational Software. Dissertation Nr. 16392, ETH Zurich, 2006.

http://www.bewersdorff-online.de/monopoly/
http://www.bewersdorff-online.de/monopoly/
http://www.brian-borowski.com/Truth/TruthTableConstructor.html
http://www.brian-borowski.com/Truth/TruthTableConstructor.html

Bibliography 99

[22] M. Brändle. GraphBench API on SwissEduc. http://www.
swisseduc.ch/informatik/graphbench/programming.html,
last visited September 2007.

[23] M. Brändle and J. Nievergelt. Tackling complexity: A case study
on educational software. World Conference on E-Learning in
Corp., Govt., Health., and Higher Ed. (ELEARN), Volume 2004,
Issue 1, pages 1794–1799, 2004.

[24] J. D. Bransford, R. D. Sherwood, T. S. Hasselbring, C. K. Kinzer,
and S. M. Williams. Anchored Instructions: Why we need it and
how technology can help. In D. Nix and R. Spiro, editors, Cogni-
tion, Education and Multimedia: Exploring ideas in high technol-
ogy, pages 163–205. Erlbaum, Hillsdale, NJ, 1990.

[25] T. Brinda. Didaktisches System für objektorientiertes Modellieren
im Informatikunterricht der Sek. II. PhD thesis, Universität
Siegen, Siegen, 2004.

[26] J. S. Bruner. The Process of Education. Harvard University Press,
1960.

[27] J. S. Bruner, R. R. Oliver, and P. M Greenfield. Studies in Cog-
nitive Growth. John Wiley and Sons, New York, 1966.

[28] H. Burkhardt and A. H. Schoenfeld. Improving Educational Re-
search: Toward a More Useful, More Influential, and Better-
Funded Enterprise. Educational Researcher, 32(9):3–14, 2003.

[29] D. Carlson, M. Guzdial, C. Kehoe, V. Shah, and J. Stasko. WWW
interactive learning environments for computer science education.
In SIGCSE ’96: Proceedings of the twenty-seventh SIGCSE tech-
nical symposium on Computer science education, pages 290–294,
New York, NY, USA, 1996. ACM Press.

[30] J. Christen. Department of Traffic Control, City Police Zurich.
Personal Communication, March 2005.

[31] J. Clark and D. A. Holton. Graphentheorie. Grundlagen und An-
wendungen. Spektrum Akademischer Verlag, 1994.

[32] R. E. Clark. Media Will Never Influence Learning. Educational
Technology Research and Development, 42(2):21–29, 1994.

http://www.swisseduc.ch/informatik/graphbench/programming.html
http://www.swisseduc.ch/informatik/graphbench/programming.html

100 Bibliography

[33] CollabNet. JavaCC: A Parser/Scanner Generator for Java. https:
//javacc.dev.java.net/, last visited September 2007.

[34] CollabNet. TableLayout: A Java Layout Manager. https:
//tablelayout.dev.java.net/, last visited September 2007.

[35] T. Crews, G. Biswas, S. Goldman, and J. Bransford. Anchored
interactive learning environments. International Journal of AI in
Education, 8, 1997.

[36] P. J. Denning. Great principles of computing. Communications of
the ACM, 46(11):15–20, 2003.

[37] Design-Based Research Collective. Design-Based Research: An
Emerging Paradigm for Educational Inquiry. Educational Re-
searcher, 32(1):5–8, 2003.

[38] A. Engel. Wahrscheinlichkeitsrechnung und Statistik, Band 2.
Ernst Klett, Stuttgart, 1978.

[39] F. Fischer, M. Waibel, and C. Wecker. Nutzenorientierte
Forschung im Bildungsbereich: Argumente einer internationalen
Diskussion. Zeitschrift für Erziehungswissenschaft, 8(3):427–442,
2005.

[40] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Pat-
terns: Elements of Reusable Object-Oriented Software. Addison
Wesley, Massachusetts, 1994.

[41] M. Guzdial and E. Soloway. Teaching the Nintendo Generation to
Program. Communications of the ACM, 45(4):17–21, 2002.

[42] W. Hartmann, M. Näf, and R. Reichert. Informatikunterricht pla-
nen und durchführen. Springer, Berlin, 2006.

[43] P. J. Hurley. A Consice Introduction to Logic. Wadswoth / Thom-
son Learning, eight edition, 2003.

[44] ISEE Systems. Stella. Systems Thinking Software for Educa-
tion and Research. http://www.iseesystems.com/, last visited
September 2007.

[45] B. J. Jansen, A. Spink, and T. Saracevic. Failure analysis in query
construction: Data and analysis from a large sample of web queries.

https://javacc.dev.java.net/
https://javacc.dev.java.net/
https://tablelayout.dev.java.net/
https://tablelayout.dev.java.net/
http://www.iseesystems.com/

Bibliography 101

In Proceedings of the 3rd ACM International Conference on Digital
Libraries, pages 289–290, Pittsburgh, USA, 1998. ACM.

[46] R. Katz. Contemporary Logic Design. Benjamin-Cummings, Red-
wood City, California, 1994.

[47] A. C. Kay. Computers, Networks and Education. Scientific Amer-
ican. Special Issue 3(265), pages 100–107, 1991.

[48] A. N. Langville and C. D. Meyer. Google’s PageRank and Be-
yond: The Science of Search Engine Rankings. Princeton Univer-
sity Press, Princeton and Oxford, 2006.

[49] B. Laurel. Computers as Theatre. Addison-Wesley Longman, 1993.

[50] H.P. Lindenmann. Netzmodelle und Simulation (Teil 2). Vor-
lesungsunterlagen Institut für Verkehrsplanung und Transportsys-
teme, ETH Zürich, September 2003.

[51] H. Mandl and B. Kopp. Blended Learning: Forschungsfragen
und Perspektiven. Research report No. 182, Ludwig-Maximilians-
Universität München, Lehrstuhl für Empirische Pädagogik und
Pädagogische Psychologie, 2006.

[52] MathDemos Projects. Animated Matrix-Vector Multiplication.
http://mathdemos.gcsu.edu/mathdemos/matvec/matvec.
html, last visited September 2007.

[53] EPA Mathematik. Einheitliche Prüfungsanforderungen in der
Abiturprüfung Mathematik. Beschluss der Kultusministerkonferenz
vom 01.12.1989 i.d.F. vom 24.05.2002. Siehe auch http://www.
kmk.org/doc/beschl/EPA-Mathematik.pdf, last visited Septem-
ber 2007.

[54] MathWorks, NIST. JAMA: A Java Matrix Package. http://math.
nist.gov/javanumerics/jama/, last visited September 2007.

[55] F. Mattern. Hundert Jahre Zukunft: Visionen zum Computer-
und Informationszeitalter. In F. Mattern, editor, Die Informa-
tisierung des Alltags – Leben in smarten Umgebungen. Springer,
Berlin Heidelberg New York, 2007.

[56] R. Mayer. Multimedia Learning. Cambridge University Press,
2001.

http://mathdemos.gcsu.edu/mathdemos/matvec/matvec.html
http://mathdemos.gcsu.edu/mathdemos/matvec/matvec.html
http://www.kmk.org/doc/beschl/EPA-Mathematik.pdf
http://www.kmk.org/doc/beschl/EPA-Mathematik.pdf
http://math.nist.gov/javanumerics/jama/
http://math.nist.gov/javanumerics/jama/

102 Bibliography

[57] W. J. Meyer. Concepts of Mathematical Modeling. McGraw-Hill
Book Company, 1984.

[58] J. Nievergelt. Interactive Systems for Education: The New Look
of CAI. Proceedings IFIP Conference on Computers in Education,
53, No. 4:465–472, 1975.

[59] J. Piaget. Das Erwachen der Intelligenz beim Kinde. Klett-Cotta,
Stuttgart, 3 edition, 1991.

[60] PTV Planung Transport Verkehr AG. VISSIM. http://www.ptv.
de/, last visited September 2007.

[61] R. Reichert. Theory of Computation as a Vehicle for Teaching
Fundamental Concepts of Computer Science. Dissertation Nr.
15035, ETH Zurich, 2003.

[62] R. Reichert and W. Hartmann. On the Learning in E-Learning.
In Proceedings of EDMEDIA 2004 - World Conference on Ed-
ucation Multimedia, Hypermedia and Telecommunications, pages
1590–1595, Lugano, Switzerland, June 2004.

[63] R. Reichert, J. Nievergelt, and W. Hartmann. Programmieren mit
Kara. Ein spielerischer Zugang zur Informatik, (ergänzte Neuauf-
lage). Springer, Berlin, Dezember 2004.

[64] G. Reinmann. Nur “Forschung danach”? Vom faktischen und po-
tentiellen Beitrag der Forschung zu alltagstauglichen Innovatio-
nen beim E-Learning. Arbeitsbericht Universität Augsburg, Nr. 14,
2006.

[65] M. Schaefer. Crossroad – Simple Traffic Simulation. http:
//paginas.fe.up.pt/~eol/schaefer/crossroadApplet/
index.htm, last visited September 2007.

[66] T. Schickinger and A. Steger. Diskrete Strukturen. Band 2:
Wahrscheinlichkeitstheorie und Statistik. Springer-Verlag, Berlin,
Heidelberg, New York, 2002.

[67] U. Schöning. Logik für Informatiker. Spektrum Akademischer
Verlag, Heidelberg, Berlin, Oxford, 1995.

[68] R. Schulmeister. Taxonomy of Multimedia Component Interactiv-
ity. A Contribution to the Current Metadata Debate. Studies in

http://www.ptv.de/
http://www.ptv.de/
http://paginas.fe.up.pt/~eol/schaefer/crossroadApplet/index.htm
http://paginas.fe.up.pt/~eol/schaefer/crossroadApplet/index.htm
http://paginas.fe.up.pt/~eol/schaefer/crossroadApplet/index.htm

Bibliography 103

Communication Sciences. Studi di scienze della communicazione.,
3(1):61–80, 2003.

[69] R. Schulmeister. Grundlagen hypermedialer Lernsysteme: Theorie
- Didaktik - Design, 4., überarbeitete und aktualisierte Auflage.
Oldenbourg Wissenschaftsverlag, 2007.

[70] A. Schwill. Fundamental ideas of computer science. EATCS-
Bulletin, 53:274–295, 1994.

[71] A. Simonetto. DynaTraffic – Eine Lernumgebung zu Markov-
Ketten. Masterarbeit ETH Zürich, 2007.

[72] C. Snyder. Paper Prototyping - The Fast and Easy Way to Design
and Refine User Interfaces. Elsevier Science, 2003.

[73] Software Systems Ampel and Knobel. BPS GmbH. http://www.
bps-verkehr.de/, last visited September 2007.

[74] D. E. Stokes. Pasteur’s Quadrant. Basic Science and Technological
Innovation. Brookings Institution Press, Washington DC, 1997.

[75] M. Treiber. Microsimulation of road traffic, online Applet.
http://vwisb7.vkw.tu-dresden.de/~treiber/MicroApplet/,
last visited September 2007.

[76] E. Trichina. Didactic instructional tool for topics in com-
puter science. In ITiCSE ’99: Proceedings of the 4th annual
SIGCSE/SIGCUE ITiCSE conference on Innovation and technol-
ogy in computer science education, pages 95–98, New York, NY,
USA, 1999. ACM Press.

[77] V. Tscherter. Exorciser: Automatic Generation and Interactive
Grading of Structured Exercises in the Theory of Computation.
Dissertation Nr. 15654, ETH Zurich, 2004.

[78] University of Berne. The Logics Workbench. http://www.lwb.
unibe.ch, last visited September 2007.

[79] University of Berne. ViLoLa - A Virtual Logic Laboratory. http:
//www.vilola.unibe.ch, last visited September 2007.

[80] R. Wattenhofer. Computer Networks, Chapter 3. Compulsory
course for 2nd year computer science students, ETH Zurich, 2007.

http://www.bps-verkehr.de/
http://www.bps-verkehr.de/
http://vwisb7.vkw.tu-dresden.de/~treiber/MicroApplet/
http://www.lwb.unibe.ch
http://www.lwb.unibe.ch
http://www.vilola.unibe.ch
http://www.vilola.unibe.ch

104 Bibliography

[81] H. Wedekind, R. Inhetveen, and E. Ortner. Informatik als Grund-
bildung - Teil VI: Logik und Geltungssicherung. Informatik-
Spektrum, 28(1):48–52, 2005.

[82] D. B. West. Introduction to Graph Theory (2nd Edition). Prentice
Hall, Upper Saddle River, 2001.

[83] S. Wolf. Logic. Compulsory course for 1st year computer science
students, ETH Zurich, 2006.

[84] P. Wülser. Unterricht fürs Ohr - Podcasting in der Schule. Un-
veröffentlichtes Manuskript, 2006.

Curriculum Vitae

Ruedi Arnold

Personal Data

June 23, 1976 Date of birth
Bürglen UR Swiss citizenship

Education

1989–1996 Gymnasium in Altdorf UR, Switzerland
1996 Matura, type C

1996–1997 Serving the Swiss army. Working at UBS in
Zurich, Switzerland. Language courses
and traveling in the USA

1997–2002 Studies of computer science, ETH Zurich,
Zurich, Switzerland

1999–2000 Exchange year, Strathclyde University,
Glasgow, United Kingdom

2002 Master’s degree in computer science
(Dipl. Informatik Ing. ETH)

2000–2003 Studies of education sciences, ETH Zurich
2003 Didaktischer Ausweis ETH in computer science

2002–2007 Ph. D. studies in computer science, ETH Zurich
Advisor: Prof. Dr. Friedemann Mattern
Co-referee: Prof. Dr. Werner Hartmann
Co-referee: Prof. Dr. Carl August Zehnder

	Abstract
	Kurzfassung
	Introduction and Contributions
	ICT and Education
	Motivation and Goals
	The InfoTraffic Interactive Learning Environments
	Contributions of this Thesis
	Outline

	Didactic Concepts for Interactive Learning Environments
	Addressing Fundamental Ideas
	Abstract Topics and Real-World Examples
	Extending the Rule-e.g.-Rule Technique
	Different Representations
	Providing Interactivity and Immediate Feedback
	Automatic Update of Corresponding Views
	Conclusions

	LogicTraffic: Safe Intersections and Propositional Logic
	The Importance of Logic
	Logic in General Education
	The Program LogicTraffic
	Learning Goals and Use of LogicTraffic
	Related Work
	Conclusions

	QueueTraffic: Traffic Jam and Queuing Theory
	The Importance of Waiting Queues
	Queuing Theory and Simulation
	The Program QueueTraffic
	Learning Goals and Use of QueueTraffic
	Related Work
	Conclusions

	DynaTraffic: Markov Chains and Analysis of Dynamic Systems
	The Importance of Markov Chains
	Markov Chains and Linear Algebra
	The Program DynaTraffic
	Learning Goals and Use of DynaTraffic
	Related Work
	Conclusions

	On the Development of Interactive Learning Environments
	Media in Education: Expectations and Disappointments
	Computer Aided Instruction
	Innovation vs. Evaluation
	An Interdisciplinary Engineering-Science Approach
	Pragmatic Recommendations
	Conclusions

	Evaluation, Use and Experience
	On the Difficulty of Scientific Evaluation of Interactive Learning Environments
	Approaches to Educational Research
	The Approach of InfoTraffic
	InfoTraffic: Uses and Feedback
	Conclusions

	Results and Outlook
	Uses and Presentations of InfoTraffic
	System Design and Implementation Issues
	Acknowledgements
	Overall System Architecture
	Selected Algorithms
	Data Formats
	Used Libraries

	Bibliography

