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1 DMotivation

Verification plays a central role in the security of Java bytecode: the Java byte-
code verifier performs a static analysis to ensure that bytecode loaded over a
network has certain security related properties. When this is the case, the byte-
code can be efficiently interpreted without runtime security checks.

Our research concerns the theoretical foundations of bytecode verification
and alternative approaches of specifying and checking security properties. This is
important as currently the “security policy” for Java bytecode is given informally
by a natural language document [LY96] and the bytecode verifier itself is a closed
system (part of the Java virtual machine). We believe that there are advantages
to more formal approaches to security. A formal approach can disambiguate
the current policy and provide a basis for verification tools. It can also help
expose bugs or weaknesses that can corrupt Java security [MF97]. Moreover,
when the formal specification is realized in a logic and verification is based on a
theorem prover, extensions become possible such as integrating the verification
of security properties with other kinds of verification, e.g., proof-carrying code
[NL96, NLIT].

2 Approach

We provide a formal foundation to bytecode verification based on model check-
ing. The idea is as follows. The bytecode for a Java method M constitutes a state
transition system where the states are defined by the states of the Java Virtual
Machine (JVM) running M, and the transitions are given by the semantics of the
JVM instructions used in M. From M we can compute an abstraction M fin that
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abstracts the state-transition system to a simpler one whose states are defined
by the values of the JVM’s program counter, the operand stack, a stack pointer,
and the method’s local variables. The actual values of the stack positions and
local variables are abstracted away and simply represented by their type infor-
mation. The transition rules of M fin are defined likewise by the semantics of the
JVM machine instructions with respect to our abstraction. Since only a finite
number of types appears in each method, the resulting abstraction Mg, is finite;
the size of the state-space is exponential in the number of local variables and
the maximal stack height.

After we can apply a model checker to M fin- The properties that we model
check correspond to the type safety checks performed by the Java bytecode
verifier. For example, we specify that each transition in M fin that represents a
machine instruction in M finds appropriately typed data in the locations (stack
or local variables) it uses. The model checker then either responds that the byte
code is secure (with respect to these properties) or provides a counter-example
to its security.

3 Architectural Description

The overall structure of our system is depicted in Figure 1. As input it takes
a Java class file as well as a specification of an abstraction of the Java virtual
machine. The specification defines the states of the abstract machine and how
each bytecode instruction changes
the machine’s state. For each instruc- [ JVM l l Classfile l
tion, a precondition to its execu- Specification Reader
tion is given (e.g. that the operand- \ /

stack must contain enough operands

of appropriate type) and also invari- Metho‘?‘
ants are stated (e.g. that the stack Abstraction
may not exceed its maximal size).
These are the properties to be model [

checked.

The core routine (method ab-
straction) translates bytecode into a
finite state transition system using
the specification of the abstract ma-
chine. Separating the machine spec-
ification from the translation gives us a modular system where we can easily
change the virtual machine and the properties checked. Our system is also mod-
ular with respect to the model checker used. Currently we have implemented
two different back-ends: one that compiles the transition system and properties
to the input language of the SMV model checker and a second that generates
output in the SPIN language Promela.

SPIN l l SMV l
CodeGen CodeGen

Fig. 1. Structure of the compiler



4 Example Output

As a simple example (even here we must elide details) we give (a) a Java program,
(b) the corresponding bytecode, and (c¢) the output of our system, which is input
for the SPIN model checker.

#define pc_is_1 (pc == 1)
#define pc_is_2 (pc == 2)

/* Conditions to be checked */
#define cond_1 (locals[0] == INT)
#define cond_2 (st[stp_st - 1] == INT)

[...]
/* State of the abstract machine */
byte pc; /* program counter */
byte st[3]; /* operand stack */
byte stp_st; /* stack pointer */
byte locals[1] /* local variables */
public static int fac(int a){ /* Process that watches if the conditions hold */
if (a==0) proctype asrt_fac() {
return 1; assert( ( !pc_is_1 || cond_1) && [...1)}
else
return axfac(a-1);} /% Process that models the transition system */
proctype meth_fac() {
(a) Java Code do
/* iload_0 */
: pc_is_1 -> atomic {
pc = pc + 1;
st[stp_st] = locals[0];
.method public static fac(I)I stp_st = stp_st + 1 };
.limit stack 3
.limit locals 1 /* ifne Labell */
.line 8 11 pc_is_2 -> atomic {
iload_0 if
ifne Labell :: pc = pc + 5;
.line 9 :: pc =pc+ 3
iconst_1 fi;
ireturn stp_st = stp_st - 1 };
.line 11
Labell: [...]
iload_0
iload_0 od }
iconst_1
isub /* Initialization of the abstract machine */
invokestatic Sample/fac(I)I init {
imul atomic {
ireturn pc = 1; stp_st = 0; locals[0] = INT;
.end method run meth_fac(); run asrt_fac() } }
(b) Bytecode (c) facg, and Properties

The Java program and the bytecode should be clear. We have added by hand
some comments to (c). In the process meth fac, the transitions of the method
fac are modelled. For example, the first instruction of the method, iload0, loads
an integer value from a local variable on the stack; the corresponding condition
to be checked, (cond_1), requires that the respective variable contains an integer
value. The instruction ifne performs a conditional branch, which is modelled by
nondeterministically assigning a new value to the program counter. The process
asrt_fac runs in parallel to the process meth fac and checks if all conditions



(preconditions and invariants) are fulfilled. SPIN checks this in negligible time
(0.03 seconds).

5 Future Work

We have completed Version 1 of the system [DO WE WANT TO GIVE IT
A NAME?]. This formalizes and model-checks the JavaCard subset of Java,
which is used for smartcards [Sun98]. We have chosen this particular instance of
Java for three reasons: first, JavaCard does not allow for dynamic class loading,
therefore there are no “real-time” requirements for bytecode verification. Second,
the bytecode verifier for JavaCard lives outside the client platform, so it can
easily be replaced/extended without modifying the platform itself. Finally, our
aproach can contribute to meeting the high security requirements that smartcard
applications usually have.

In a future release we plan to extend this version to the full JVM instruction
set. The only significant problems that might occur are run time requirements for
the model checker (defined by the time a user is willing to wait when loading a
class) and multi-threading, which is not possible in JavaCard and could increase
the model checker’s search space.
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