Florian Daiber
DFKI GmbH, Germany

Gábor Sörös
ETH Zurich, Switzerland

Tomer Weller
Shenkar, Israel

A Personal Bike Coach Through the Glass
Introduction & Motivation
Cycle training today
Scenario – Cycle training tomorrow
Latest generation smart gadgets opened the way for computer support in everyday sports training:

- Pedometer
- Smartphones
- Heart-rate monitors
- GPS-enabled watches
- Sophisticated cycling computers

- Displays (e.g. cycling computers, watches, etc.)
- Audio, e.g. warning sounds, speech (e.g. Runkeeper)

- Limited input and output capabilities
Technology in Sports Training & Research

- Computers have a long tradition in sports
 - Numerical modeling, statistical analysis and simulation, measurement of biomechanical data and documentation [Baca 2006]
 - Computer-supported training [Wiemeyer 2006]

- Ubiquitous computing in sports technology
 - Computer supported collaborative sports [Wulf 2009]
 - Computer-augmented sports systems [Reilly 2009]

- Research directions
 - Wearable sensors to support fitness exercises
 - Heads-up displays (HUDs)
Recent wearable HUD technology

http://optinvent.com/

http://jet.reconinstruments.com/

http://www.glassup.net/

http://www.vuzix.com

http://tele-pathy.us

http://www.google.com/glass/start/
Contribution

- Cyclo prototype
 - Bike assistant application on a Glass device
 - HUD for personal and collaborative sports training

- Design approach & UI Design
 - Requirement survey with 35 participants
 - User interface design for Glass

- Implementation
 - First impressions about developing for the Glass platform
Requirement Survey
Requirement Survey

- **Performance measurements**
 - *current speed, average speed, distance, stopwatch, burnt calories*

- **Performance comparison**
 - *race against self, race against others → virtual partner*

- **Navigation**
 - *map, elevation profile*

- **Assistance notifications**
 - *traffic, weather, stops*

- **Video recording**
 - *scene recognition, night vision, post-race analysis*
Requirement Survey

- **Display**

 for training and entertainment

- **Communication**

 with team and with coach

- **Interaction**

 few buttons or touch screen, or even hands-free

- **Form factor**

 weather-proof, dust-proof, light, easy to mount on bike

Almost all these features are available with a smartphone and a Glass!
Glass
Glass Hardware

Image from http://andrewhy.de/what-is-inside-google-glass/
Glass Hardware

- **Processing**
 roughly equivalent to *iPhone 4* or *Samsung Galaxy Nexus*
 Texas Instruments OMAP 4430 SoC: 1.2 GHz Dual-core ARM Cortex-A9 CPU, PowerVR SGX540 GPU, 16GB storage, 682MB RAM, Android 4.0.4 OS (API 15)

- **Camera**
 cell-phone equivalent, 5MP still (2528x1856 pixels) or 720p video, no flash

- **Display**
 upright, color, prisma projector, 640 × 360 pixels, focused at a distance

- **Sensors**
 touchpad (long and narrow, 1366x187 pixels), microphone, accelerometer, gyroscope, compass, GPS via phone

- **Communication**
 Bluetooth tethering through mobile phone, direct WLAN 802.11b/g, no cellular modem
Micro Interactions

- Tap to wake up
- Swipe down for standby
- Tap to select
- Swipe to navigate on timeline
- „OK, Glass…” to give voice commands
- Look up and nod to dismiss
User Interface Design
A Glass application IS NOT

- An immersive augmented reality application
- A data-intensive application
- A highly engaging application
A Glass application

- Delivers small bits of relevant information

- Requires minimal user interaction:
 - Simple swipe gestures
 - Head nod
 - Voice recognition
Planning the Cyclo Experience

- Data to deliver
 - Continuous status updates
 - Contextual notifications

- Design Constraints
 - Minimal amount of Information
 - Hands-free interaction
Continuous Status Display

- Constantly displayed, no interactions necessary.
- Real time update:
 - Speed
 - Distance
 - Time
 - Progress compared to virtual partner

![Graphs showing real-time updates for speed, distance, and time compared to virtual partner and self.](images)
Notifications

- Prepare points of interests (POIs) in advance on the map:
 - Checkpoints
 - Warnings
 - Nutrition Plan
 - ...
- Display proximity notifications when getting close to POIs
- No interactions necessary
Implementation
Implementation Strategy

- Glass Mirror API
- Standalone Android application
Mirror API

- The only official, google supported, method of implementing a Glass application
- A cloud service that accepts RESTful messages and relays them to the user’s glass device
- Messages appear as **timelines cards** on the user’s glass
Mirror API

- **Pros**
 - Well formatted timeline cards
 - Convenient distribution

- **Cons**
 - Custom GUI is hard/impossible to achieve
 - Requires network connectivity
 - Official documentation is sparse
 - Small developer community
Standalone Android Application

- Glass runs a standard android distribution (Android Ice Cream Sandwich - 4.0.3)
- As such, it can run applications built for Android
Standalone Android Application

Pros
- Direct access to all the device’s sensors
- Rich GUI library
- Offline work
- Extensive set of development tools
- Strong community support

Cons
- No official method of distribution (No Play Store on glass)
- The official glass launcher does not support 3rd party standalone android apps
1. **Load route**
 Route and POIs are loaded as GPX (GPS eXchange format) data

2. **Start ride**
 Location event loop - with each new GPS coordinate, the stats are re-calculated and the status display is refreshed

3. **Get notifications**
 A proximity alert is set on all POI locations, when these are triggered, a short message will appear for a short time

4. **Testing**
 Route simulation is created with a separate GPX file which emits fake locations into the location event loop
Conclusion

- HUD devices present a promising opportunity for a range of apps that allow hobbyist/semi-professional athletes to improve their skills.

- Google Glass applications still have some challenges to face due to form factor and implementation difficulties.
Thank You

多謝
Motivation

- Sporting functions converge in our smartphones but while smartphones have excellent sensing and processing capabilities, they are cumbersome to interact with when our hands are occupied during sports

- Extend the smartphones with input and output that is better suited for sports
Wearable displays

GlassUp
Spring 2014 from 230 EUR Italy
only optional camera, monochrome display 320x240, middle of the view, Android OS, touchpad, Bluetooth LE

Google Glass
Spring 2014 unknown USA
display 640x360, WiFi, Bluetooth

Optinvent ORA-S
Jan 2014 from 700 EUR France
display 640x480, large FOV, full eye coverage, WiFi and Bluetooth connectivity, front facing camera 640x480, 9 axis motion sensor, ambient light sensor, microphone, loudspeaker, and a high capacity rechargeable battery, light reflectors in front of the eye, flip between AR mode (in front of eye) or dashboard mode (below eye)
Wearable displays

Recon JET
available now 450 EUR Canada
display 400x240, accelerometer, gyroscope, magnetometer + temperature, pressure sensor, touchscreen for all-weather and gloves too, eye gaze tracking, camera, dual-core 1GHz CPU, 1GB RAM, 8GB flash memory, Android OS, Bluetooth 4.0, ANT+

Spaceglasses META.01
Jan 2014 500 EUR Israel

Vuzix M100
End 2013 400 EUR USA
display 400x240, 4 buttons (no touchpad), 1Gbyte RAM, OMAP4430 - 1GHz

Kopin Corp. Golden-i
9-axis head tracking, 14MP camera, display 960x540, compass, Nuance’s speech recognition engine (38 languages), Bluetooth, WiFi, Windows CE
Recon Instruments JET

- Dual Core CPU
- Bluetooth
- Wi-Fi
- ANT+
- GPS
 - WITH ON BOARD GYROSCOPE, ACCELEROMETER, MAGNETOMETER, ALTIMETER AND THERMOMETER
- Optical Touchpad
- HD Camera
 - WITH MICROPHONE AND SPEAKER
- Polarized Lenses
- Changeable Battery
- High Resolution Display
 - WITH IR GAZE DETECTION

(left to right: 988 x 733 pixels)
4iiii Sportiiis

Universal mount attaches to virtually any pair of glasses

Built-in speaker for audible updates

Flexible boom with multi-colored LEDs guides you to target zones