Coherent rendering of smile previews with fast neural style transfer

Valentin Vasiliu1,2 Gábor Sörös2,3

1. EPFL 2. Kapanu 3. NOKIA Bell Labs

ISMAR’19, Beijing
October 15, 2019
video

Kapanu

Visual Computing Technologies for Dentistry
AR smile previews

must be highly realistic

A „virtual mirror“:
• 3D and color
• live in motion
• mobile

Aesthetic visualization:
• increases awareness
• facilitates decision
• emotional
AR smile previews must be highly realistic

Coherent rendering aims for seamless augmentation by modeling:
- color tone (illumination)
- defocus blur, motion blur
- camera lens distortions
- image noise, etc.

Capturing and modeling all these (dynamic) effects in the vision+graphics pipeline seems infeasible in real time.
Neural style transfer

CNNs are able to separate the **content** of an image from the **style** of the image:

- filter banks
- hierarchical representation
- high-level features describe content
- low-level feature **statistics** describe style

By manipulating the statistics only, we can change the style of the image.

Gatys et al. 2015: A neural algorithm of artistic style
Our goal: arbitrary style transfer with temporally stable results in < seconds time
Network evolution

WCT: Whitening-Coloring Transform
[Li’17] only matrix operations

WCT chaining

[Li ‘17] Universal Style Transfer via Feature Transforms (NIPS ’17)
[Huang ‘17] Arbitrary Style Transfer in Real-Time With Adaptive Instance Normalization (ICCV ’17)
Network evolution (2)

Training:
- only the decoder is trained
- reconstruction loss + style loss
- WCT: independent
- AdaIN: retraining with mixer once
- MS COCO images (no faces/teeth!)

Execution (PC):
- single forward pass
- VGG19.2 3s on CPU, 44ms on GPU
Comparison – color transfer

Quality improved: In our user study with 8 participants, everybody ranked all our results higher than the original rendering.
Comparison - blur

camera (blurry frame) vs. camera (sharp frame)

- Our VGG19.1
- Our VGG19.2
- Our VGG19.4

- Deeper architectures transfer blurriness well

rendered

- Wrong
Comparison – original style transfer

- Camera
- Rendered
- Ours

Original AdalN [Huang'17]
- Too abstract

Original WCT [Li'17]
- False colors, too abstract

Original WCT chain [Li'17]
- Too much content change
In case of shallower architectures, temporal feedback is not even necessary.
Conclusion

Our method

- improves the rendered content by transferring the style from the original background to the combined image (each new frame is a new style);
- is only a post-processing step (no need to modify the AR pipeline);
- re-generates the whole image in an autoencoder (instead of simple filtering);
- can transfer color, image noise, and (to some extent) blur;
- is not yet real time, but faster than other style transfer methods.
Further ideas

Targeted style transfer

- binary masks for regional style transfer [Gatys ’17]
- masks are cheap to get from the renderer
- further optimization of where to take the style patch from

Capturing other effects

- lens geometric distortions (part of the style?)

Other applications

- the method is not limited to faces or teeth, but we assumed we replace a real object with a virtual object of the same type and pose.
Thank You

Come and try our demo!

Source: Ivoclar Vivadent AG

www.kapanu.com
internships around the globe
various AR/MR topics
https://www.bell-labs.com/connect/internships/

Thank You