
Integrating Handhelds into Environments of
Cooperating Smart Everyday Objects

Frank Siegemund and Tobias Krauer

Institute for Pervasive Computing
Department of Computer Science

ETH Zurich, Switzerland
siegemund@inf.ethz.ch

Abstract. Because of their severe resource-restrictions and limited user
interfaces, smart everyday objects must often rely on remote resources
to realize their services. This paper shows how smart objects can obtain
access to such resources by spontaneously exploiting the capabilities of
nearby mobile user devices. In our concept, handhelds join a distributed
data structure shared by cooperating smart objects, which makes the
location where data are stored transparent for applications. Smart ob-
jects then outsource computations to handhelds and thereby gain access
to their resources. As a result, this allows smart items to transfer a
graphical user interface to a nearby handheld, and facilitates the collab-
orative processing of sensory data because of the more elaborate storage
and processing capabilities of mobile user devices. We present a concrete
implementation of our concepts on an embedded sensor node platform,
the BTnodes, and illustrate the applicability of our approach with two
example applications.

1 Introduction

Smart environments will be populated by different kinds of computing devices
with varying processing power, energy resources, memory capacity, and different
means for interacting with users. Handheld devices such as mobile phones or
PDAs, computer-augmented everyday artifacts, RFID-enabled consumer prod-
ucts, and wall-sized displays are only some of the devices that are likely to play
a role in future smart environments. However, as pointed out by Mark Weiser
[11], “the real power of the concept [of Ubiquitous Computing] comes not from
any one of these devices; it emerges from the interaction of all of them.” One
core challenge in smart environments is therefore to exploit their heterogeneity
by building applications that make use of and combine the specific capabilities
provided by different types of computing devices.

This becomes even more important in connection with resource-restricted
smart everyday objects, which usually possess only very limited user interface
capabilities. Such a smart object can achieve very little on its own and must
rely on remote resources to realize its services. Thereby, handheld devices are

well suited as resource providers for smart objects because of their complement-
ing capabilities: while there are potentially many smart objects present in a
smart environment that can collaboratively provide detailed information about
the environment and the context of a user, handheld devices are equipped with
powerful storage mediums and have more elaborate input and display capabili-
ties.

This paper shows how smart objects can spontaneously exploit the resources
of nearby mobile user devices. Thereby, handhelds participate in a shared data
structure established by cooperating objects, and serve as an execution platform
for code from smart items. Mobile code is developed in Java, embedded into
C code, and stored on embedded nodes, which themselves cannot execute Java
programs. We also present an implementation of our approach, consisting of a
programming framework, a runtime environment for executing code on nearby
user devices, and a corresponding frontend.

By smart everyday objects we understand everyday items such as chairs,
books, or medicine that are augmented with active sensor-based computing plat-
forms. Hence, smart objects can perceive their environment through sensors,
collect information about the context of a nearby user, and collaborate with
other objects in their vicinity by means of wireless communication technolo-
gies. In this paper, BTnodes [2] serve as a prototyping platform for augmenting
everyday items. BTnodes are equipped with an autonomous power supply, con-
nectors for external sensor boards, and Bluetooth modules for communication
(cf. Fig. 1).

Fig. 1. A smart everyday object: an everyday item augmented with a sensor-based
computing platform.

The rest of this paper is structured as follows: Section 2 summarizes related
work. Section 3 presents our concepts for integrating handhelds into smart en-
vironments, while section 4 describes a programming framework for developing
mobile code for smart objects. Section 5 presents the runtime environment for
outsourcing computations to handheld devices. Section 6 evaluates our imple-
mentation, and section 7 presents two example applications. Section 8 concludes
the paper.

2 Related Work

Hartwig et al. [3] integrates small Web servers into embedded devices and enables
people to interact with them using mobile phones and a WAP (Wireless Applica-
tion Protocol) interface. In this paper, we focus on the integration of handhelds
into sets of cooperating objects, not on the interaction with a single device. We
also want to enable smart objects to outsource code for energy-consuming com-
putations to handheld devices in order to spontaneously exploit their resources.
This does not necessarily require user interaction but can instead be transpar-
ent for a user. Furthermore, by outsourcing Java code to a mobile device it is
possible to support more complex user interfaces than with WAP pages.

Aglets [6] is a programming framework for mobile agents based on Java
technology. Whereas mobile agents migrate from execution platform to execution
platform transferring their code, data, and execution state, we only transfer code
from a smart object to a nearby handheld device. Other data are not transmitted
but are made available to all cooperating objects by means of a distributed data
structure. Furthermore, programming frameworks like the Aglets rely on RMI
for code shipping and a Java Virtual Machine (JVM) that must run on every
node. In our case, the embedded platforms are so ressource-restricted that they
usually do not support a full-fledged JVM. Instead, virtually all embedded sensor
node platforms are programmed using the C programming language.

The Stanford Interactive Workspaces project [4] introduces a tuplespace-
based infrastructure layer for coordinating devices in a room. This tuplespace is
centralized and runs on a stationary server, whereas we distribute a shared data
structure among cooperating smart objects and handheld devices, and do not
assume that there is always a powerful server in wireless transmission range.

Want et al. [10] augments everyday items with passive RFID tags and thereby
provides them with a representation in the virtual world. Other passive tagging
technologies such as barcodes and two-dimensional visual codes have also been
used to link real and virtual worlds by attaching them to everyday things [5].
Although handhelds with attached scanning devices are used to read out those
tags, an application associated with an object is usually provided by a service
in the background infrastructure. In our approach, we do not rely on an always-
available background infrastructure link. Instead, because of the active tagging
technology used to augment everyday items, we enable smart objects to offer
their services independently from a backend infrastructure.

3 Basic Concepts and Architecture Overview

In our vision, smart environments are populated by smart objects that provide
context-aware applications to nearby users. Due to their resource restrictions,
smart objects thereby need to cooperate with other objects, for example, dur-
ing the context-recognition process in order to exchange and fuse sensory data.
To enable cooperation among different devices, smart objects establish a shared
data space for exchanging sensor values and for accessing remote resources. We

have implemented such a shared data structure as a distributed tuplespace for
the BTnode embedded device platform1. Thereby, each node contributes a small
subset of its local memory to the distributed tuplespace implementation. Using
the tuplespace as an infrastructure layer for accessing data, the actual location
where data is stored becomes transparent for applications. The data space hides
the location of data, and tuples can be retrieved from all objects that coop-
erate with each other. Consequently, an application that operates on data in
the distributed tuplespace can be executed on every device participating in that
shared data structure. The actual node at which it is executed becomes irrele-
vant. Hence, when a handheld device joins the distributed tuplespace shared by
cooperating smart objects, applications developed for a specific smart item can
be executed also on the handheld device.

We have realized our concepts for integrating handhelds into environments
of cooperating smart objects in a software framework called Smoblets. The term
Smoblet is composed of the words smart object and Applet, reflecting that in
our approach active Java code is downloaded from smart objects in a similar
way in which an Applet is downloaded from a remote Web server. Fig. 2 depicts
the main components of the Smoblet system: (1) a set of Java classes – the
actual Smoblets – stored in the program memory of smart objects, (2) a Smoblet
frontend that enables users to initiate interactions with nearby items, (3) a
Smoblet runtime environment for executing Smoblets on a mobile user device,
and (4) a distributed tuplespace implementation for smart objects and handheld
devices.

Smart object Smart object

Handheld device
(PDA or mobile phone)

Distributed tuple space

Smoblet runtime

Smoblets
Smoblet
frontend

Smart object

Application

Distributed tuple space

Sm
o

b
lets sto

red
in

 p
ro

g
ra

m
 m

em
o

ry

Sensory data
are exchanged
using the
space as
shared data
medium

Smoblet
transfer

Data exchange
hidden in

tuple space

Fig. 2. Overview of the Smoblet system.

Smoblets. The code that is transferred to a nearby user device – in the
following referred to as Smoblet – consists of Java classes that are developed on
1 Please refer to http: www.inf.ethz.ch/˜siegemun/software/ClusterTuplespace.pdf for

a more detailed description of our implementation.

an ordinary PC during the design of a smart object. However, as the smart ob-
jects themselves cannot execute Java code, Smoblets encapsulate computations
that are designed to run on a more powerful device but still operate on the data
basis of the smart object that provided the code. The sole reason for storing
Smoblets in program memory is the memory architecture of many embedded
sensor node platforms, which often have significantly more program memory
than data memory. The BTnodes, for example, offer 128kB of program and
64kB of data memory. Only about half of the program memory on the BTnodes
is occupied by typical programs, which leaves ample space for storing additional
Java code.

Front- and backend. The Smoblet backend is responsible for executing
downloaded code on a handheld device. It also protects the user device from
malicious programs and enables downloaded Java classes to access data on other
platforms by providing an interface to the distributed tuplespace implementa-
tion. In contrast, the Smoblet frontend helps users to search for smart objects
in vicinity, to explicitly initiate downloads, and to customize the behavior of the
Smoblet backend system.

Distributed tuplespace. The distributed tuplespace is the core component
for integrating handhelds into collections of cooperating objects. Its main pur-
pose is to hide the actual location of data from an application, which makes it
possible to execute code on every of the cooperating nodes. Hence, it is possible
to design applications that are executed on a handheld device but still operate
on the data basis of the smart object the code originates from. The distributed
tuplespace also allows cooperating objects to share their resources and sensors.
The memory of other objects, for example, can be used to store local data, and
it is possible to access remote sensor values. In our application model, smart
objects specify how to read out sensors and write the corresponding sensor sam-
ples as tuples into the distributed data structure, thereby sharing them with
other objects. Please refer to [8] for a more detailed description and an eval-
uation of our tuplespace implementation for the BTnodes. In order to build a
running Smoblet system, we have ported our implementation to Windows CE.
This allows handheld devices to participate in the shared data structure.

4 The Smoblet Programming Framework

Besides the components for exchanging and executing Smoblets, the Smoblet
programming framework supports application developers in realizing the cor-
responding code for smart objects. Deploying Smoblets involves four steps (cf.
Fig. 3): (1) using a set of helper classes, Java code containing the computations
to be outsourced is implemented on an ordinary PC, (2) the resulting class files
are embedded into C code and (3) linked with the code for the basic application
running on the embedded sensor node, and (4) the resulting file is uploaded to
the smart object’s program memory.

In the following, we concentrate on the development of the actual code that
is outsourced to a nearby mobile user device. This is done on an ordinary PC

Develop Smoblet
on PC

Embed code into
C files

Compile and
link files

Sensor node
application files

Upload to
microcontroller

Fig. 3. The process of deploying a Smoblet on a sensor node.

using Java and a set of supporting classes provided by our framework. Among
other things, the framework provides classes for retrieving information about
the current execution environment of a Smoblet, for controlling its execution
state, and for exchanging data with nearby smart objects. We distinguish be-
tween two application domains for Smoblets: applications in which smart ob-
jects transfer entire user interfaces to nearby handhelds in order to facilitate
user interaction, and applications for outsourcing computations in order to ex-
ploit a handheld’s computational abilities, without requiring user interaction.
These two application domains are represented by the GraphicalSmoblet and
BasicSmoblet classes, which directly inherit from the superclass Smoblet. All
user-defined code that is to be outsourced to a nearby handheld must inherit
from these classes. This can be seen in Fig. 4, which shows selected parts of a
Smoblet for collecting microphone samples from nearby smart objects.

There are four basic categories of methods provided by the Smoblet class
and its subclasses: (1) informational methods, (2) methods for controlling the
execution state of a Smoblet, (3) event reporting functions, and (4) functions

import smoblet.*;

public class MicCollector extends BasicSmoblet {

5: public String getSmobletName() {
return “MicCollector”;

}

public boolean isAutoStart() {
return true;

11: }

13: public boolean onInit() { . . . }

public boolean onRun() {
while (extractFeatures) {

17: res = consumingScanTupleDts(micFeature, 20);
Thread.sleep(2000);

}
return true;

21: }

23: public void onHomeDeviceLost() { . . . }
}

Fig. 4. Selected methods from a Smoblet without graphical user interface.

for accessing data in the distributed tuplespace. Informational methods provide
information about the environment of a Smoblet and about the Smoblet itself –
for example its name, a human-readable description of its functionality, informa-
tion about its requirements regarding a host platform, and whether it should be
automatically started after download to a handheld device (cf. Fig. 4 lines 5-11).
These informational methods are mainly used by the tool that embeds Smoblets
into C code for storage on an embedded platform. This tool for converting Java
files loads Smoblet classes, retrieves information about them, and stores these
information in addition to the encoded class files on a sensor node. Consequently,
when a user wants to lookup Smoblets on a particular smart object, it is not
necessary to download the complete Smoblet to get this information. Instead,
the object shares these data by means of the distributed data structure with
nearby handhelds.

The methods controlling a Smoblet’s execution state are executed by the
runtime environment on a mobile user device after the code has been successfully
downloaded from a smart object. The onInit method, for example, is executed
immediately after a Smoblet has been started, followed by the onRun, onAbort
or onExit methods (cf. lines 13-21 in Fig. 4). Every Smoblet is executed in a
separate Java thread.

Event reporting functions are executed after certain events on the handheld
or in its environment have occurred. For example, when the device the code
stems from is leaving the communication range of the handheld or when new
devices come into wireless transmission range, an event is triggered and the cor-
responding method executed (cf. line 23 in Fig. 4). Event reporting functions
are also used to handle callbacks registered on the shared data space. A hand-
held participating in the space can specify tuple templates and register them
with the distributed tuplespace. When data matching the given template is then
written into the space, an event reporting function having the matching tuple
as argument is invoked on the handheld.

The last category of methods provided by the Smoblet class are methods for
accessing the shared data structure. These come in three variants: functions for
accessing the local data store, i.e., the local tuplespace; functions for accessing the
tuplespace on a single remote device; and functions operating on the tuplespaces
of a set of cooperating smart objects. The MicCollector Smoblet, for example,
retrieves microphone tuples from all nodes participating in the shared data space
(cf. line 17 in Fig. 4). Thereby, it relieves resource-restricted sensor nodes from
storing microphone samples by putting them in its own memory.

5 The Smoblet Front- and Backend

The Smoblet frontend (cf. Fig. 5) is a graphical user interface for searching
Smoblets provided by nearby smart objects, for adapting security parameters,
for retrieving information about downloaded code and its execution state, and
for manually downloading as well as starting Smoblets. If the user permits it,
a handheld device can also serve as an execution platform for nearby smart

Fig. 5. The Smoblet Manager: the tool for searching Smoblets and restricting access
to resources.

objects without requiring manual interaction. In this case, the mobile user device
continually searches for Smoblets on nearby devices. If a Smoblet wants to be
automatically executed its code is then downloaded and started.

Especially for Smoblets that offer a graphical user interface and therefore
provide interactive services, the time needed to discover nearby devices can sig-
nificantly reduce usability. This is especially true for Bluetooth because of its
relatively poor device discovery performance (a Bluetooth inquiry often takes
more than 10 s) [9]. As a possible solution, we propose an explicit selection
mechanism based on passive RFID tags to determine the device address of a
smart item. Thereby, a passive tag is attached to a smart object containing the
device address of the BTnode integrated into that object. Also, a small-range
RFID reader is attached to the mobile user device. A user can then explicitly
select an object by holding the RFID reader close to it, thereby retrieving the
corresponding BTnode’s device address. Having this information, the mobile
code can be immediately downloaded to the handheld device and the graphical
user interface be started. To experiment with such explicit selection mechanisms
for triggering interactions with smart objects, we connected a small-size (8cm ×
8cm) RFID reader over serial line to a PDA.

In contrast to the frontend, the Smoblet backend is responsible for provid-
ing the actual runtime environment and access to the data structure shared by
cooperating objects. It also handles the actual download of code, protects the
handheld device from malicious code, regularly searches for new devices in range,
and forwards events to Smoblets while they are executed.

6 Evaluation

In this section we evaluate our prototype implementation together with the un-
derlying concepts. In particular, we discuss time constraints for downloading
code, demands on the underlying communication technology, and the perfor-
mance overhead caused by cooperating with multiple smart objects.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 5 10 15 20 25 30 35

T
im

e
 p

e
r

S
m

o
b
le

t
d
o
w

n
lo

a
d
 i
n
 m

s

Smoblet size in kB

Download from single remote node

Download from 1 out of 4 remote nodes

 60

 80

 100

 120

 140

 160

 180

 200

 220

 0 2 4 6 8 10 12 14 16 18 20T
im

e
 p

e
r

s
c
a

n
 o

p
e

ra
ti
o

n
 i
n

 m
s
 (

a
v
e

ra
g

e
)

Number of result tuples

2 nodes, all tuples on remote node
5 nodes, tuples on remote nodes

5 nodes, tuples on single remote node

(a) (b)

Fig. 6. (a) Time needed for downloading Smoblets from smart everyday objects; (b)
time needed for a scan operation on the shared data structure.

Fig. 6 a) shows the time needed for downloading code in the realized proto-
type. It can be seen that the throughput achieved is about 37.4 kbit per second,
which is relatively poor compared to the theoretical data rate of Bluetooth but
compares well to data rates measured by other researchers in connection with
Bluetooth-enabled embedded device platforms [7]. However, Bluetooth itself is
not the limiting factor when downloading code from a smart object, but thread
synchronization issues on the mobile user device. As code is usually downloaded
in the background, several threads are executed simultaneously during the down-
load: Java threads, threads belonging to the Bluetooth stack, threads that are
used to continuously query for devices in range and for accessing the shared data
structure. That Bluetooth is not the dominating factor can also be seen in Fig.
6 a) because the time for download does not depend on the number of nodes that
share a Bluetooth channel. Because of the TDD (time division duplex) scheme in
which Bluetooth schedules transmissions and the fact that the Bluetooth mod-
ules used apply a simple round-robin mechanism for polling nodes, an increased
number of devices sharing a channel would imply decreased performance, which
cannot be observed in our case. However, besides the relatively low throughput,
even Smoblets that offer graphical user interfaces are typically downloaded in a
few seconds. This is because class files and pictures are compressed before they
are stored on a smart object. Typical compression rates for code are around 40-
50% but less for pictures because they are usually already in a compact format.
For example, the interactive Smoblet presented in Section 7 has a code size of
around 26.9 kB and a size of 15.2 kB after compression. Therefore it takes only
about 3.5 s to download the code from a smart object to a handheld.

As previously discussed, a core concept for integrating handhelds into sets of
cooperating smart objects is to make the location where data are stored trans-
parent for mobile code. Hence, as long as Smoblets search and exchange data by
means of the distributed tuplespace, they can be executed on every node partic-
ipating in that data structure without change. For example, in Fig. 4 line 17, the
MicCollector Smoblet scans for all microphone samples in the distributed data

structure and thereby relieves all collaborating nodes from storing that data in
their local tuplespaces. The same program could be theoretically executed on ev-
ery device participating in the data structure, always having the same effect. Fig.
6 b) shows the time needed for a scan operation on the distributed tuplespace
with respect to the number of tuples returned and the number of cooperating
smart objects. Thereby, all smart objects are members of a single piconet; the
scan operation returns all tuples in the distributed tuplespace matching a given
template. As can be seen, the performance for retrieving data depends on the
distribution of tuples on the remote devices. This is also a consequence of Blue-
tooth’s TDD scheme for scheduling transmissions.

We would like to conclude this section with a discussion about the overhead
caused by cooperating with collections of remote smart objects. In our approach
only code and no data are shipped from a smart object to a mobile device during
migration. This is because Smoblets usually operate not only on data from the
smart object that provided the code, but on data from multiple cooperating
devices. As can be seen in Fig. 6 b), tuplespace operations on multiple remote
nodes are thereby almost as efficient as operations on a single device but offer
the advantage of operating simultaneously on many objects.

7 Applications

There are two major application domains for Smoblets: (1) exploiting the com-
putational resources of nearby handhelds in order to facilitate collaborative con-
text recognition and (2) enabling graphical user interaction with smart objects
by outsourcing user interfaces to nearby handhelds. In this section, we present
one example from each of these two application areas.

Handling large amounts of sensory data. In order to provide context-
aware services, smart objects must be able to determine their own situational
context and that of nearby people. This usually requires cooperation with other
objects and the ability to process local sensor readings together with sensory
data provided by remote nodes. A significant problem that often arises in these
settings are streaming data, e.g., from microphones and accelerometers, which
are difficult to exchange between and difficult to store on smart objects because
of their resource restrictions. By using the proposed concepts, nearby handheld
devices can help in handling large amounts of sensory data during the collabo-
rative context recognition process.

As an example, we have implemented a Smoblet for evaluating which smart
objects are in the same room and for finding out what is happening at a spe-
cific location. This is done by means of low-cost microphones attached to smart
objects (for our experiments we have used the sensor boards described in [1]).
When a user carrying a handheld device comes into the range of a smart ob-
ject, it automatically transmits a MicCollector Smoblet (cf. Fig. 4) to the mobile
user device, where it is automatically started. Smart objects continuously sam-
ple their microphones at approximately 40 kHz and extract a feature from these
readings indicating the level of activity in their room. In this example, we sam-

0

500

1000

1500

2000

2500

3000

0 5 10 15 20 25 30 35

Number of feature extractions

E
x

t
ra

c
t
e

d
 f

e
a

t
u

re

Fig. 7. Small subset of the data assembled by the MicCollector Smoblet reflecting the
microphone measurements of four remote smart objects.

ple microphones continuously for approximately 500 ms and use the number of
crossings through the average microphone sample as feature. The MicCollector
Smoblet running on a handheld device retrieves these features from all smart
objects in range, thereby relieving them from storing these data. After several
readings, the MicCollector Smoblet can then derive the location of smart objects
(i.e., whether they are in the same room) and determine what is happening in a
room. Because of the more powerful computational capabilities of handhelds it
can thereby carry out more demanding algorithms for evaluating sensory data.
Fig. 7 shows the microphone features collected by the MicCollector Smoblet from
four devices. In the figure we have filled the area between sensor features from
smart objects in the same room. As can be seen, the features of devices in one
room are correlated, meaning that they decrease and increase simultaneously.
This fact is exploited during the context recognition process on the handheld.

Providing user interfaces. The presented approach for outsourcing com-
putations can facilitate user interaction with smart objects, which usually do not

BTnode Heart rate

monitor belt

Coil

Voltage

comparator

Fig. 8. (a) A BTnode with an attached heart rate sensor; (b) the user interface down-
loaded from the BTnode to visualize the pulse data collected during the last training.

possess keys or displays. To show the applicability of our concepts in this area,
we have augmented a heart rate monitor belt with a BTnode that records the
electromagnetic pulses generated by the belt during a training (cf. Fig. 8). The
BTnode also carries a Smoblet that can be downloaded to a handheld device.
Thereby, a user interface is transmitted to the mobile user device that allows a
sportsman to evaluate the last training.

8 Conclusion

In this paper, we presented an approach that enables smart everyday objects
to spontaneously access the capabilities of nearby mobile user devices. Thereby,
smart objects outsource computations to nearby handhelds and hence can dy-
namically exploit their resources. A distributed data structure facilitates the co-
operation with multiple smart items and enables handhelds to access remotely-
generated sensor values. We have evaluated our concepts based on a concrete
implementation, and identified two application domains – collaborative context
recognition and graphical user interaction with smart objects – in which they
prove to be valuable.

References

1. M. Beigl and H. W. Gellersen. Smart-Its: An Embedded Platform for Smart Ob-
jects. In Smart Objects Conference (SOC) 2003, Grenoble, France, May 2003.

2. J. Beutel, O. Kasten, F. Mattern, K. Roemer, F. Siegemund, and L. Thiele. Proto-
typing Sensor Network Applications with BTnodes. In IEEE European Workshop
on Wireless Sensor Networks (EWSN), Berlin, Germany, January 2004.

3. S. Hartwig, J.-P. Strömann, and P. Resch. Wireless Microservers. IEEE Pervasive
Computing, 2(1):58–66, 2002.

4. B. Johanson and A. Fox. Tuplespaces as Coordination Infrastructure for Interactive
Workspaces. In UbiTools ’01 Workshop at Ubicomp 2001, Atlanta, USA, 2001.

5. T. Kindberg et al. People, Places, Things: Web Presence for the Real World. In
WMCSA 2000, Monterey, USA, December 2000.

6. D. B. Lange and M. Oshima. Programming and Deploying Java Mobile Agents
with Aglets. Addison-Wesley, 1998.

7. M. Leopold, M. B. Dydensborg, and P. Bonnet. Bluetooth and Sensor Networks:
A Reality Check. In Proceedings of the 1st International Conference on Embedded
Networked Sensor Systems (SenSys ’03), pages 103–113, Los Angeles, Clifornia,
USA, November 2003.

8. F. Siegemund. A Context-Aware Communication Platform for Smart Objects. In
Proceedings Second International Conference on Pervasive Computing, Pervasive
2004, pages 69–86, Linz/Vienna, Austria, April 2004.

9. F. Siegemund and M. Rohs. Rendezvous Layer Protocols for Bluetooth-Enabled
Smart Devices. Personal Ubiquitous Computing, 2003(7):91–101, 2003.

10. R. Want, K. Fishkin, A. Gujar, and B. Harrison. Bridging Physical and Virtual
Worlds with Electronic Tags. In ACM Conference on Human Factors in Computing
Systems (CHI 99), Pittsburgh, USA, May 1999.

11. M. D. Weiser. The Computer for the 21st Century. Scientific American, 265(3):66–
75, September 1991.

