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Abstract

A distributed system� where processes communicate via messages with

unpredictable transmission times� is characterized by the fact that no pro�

cess has an up�to�date and consistent view of the system	s global state�

Furthermore� the notion of global time does not exist a priori within such

a system� However� by de
ning time to be a partially ordered set of vec�

tors forming a lattice structure� one gets a notion of logical time which is

realizable in such a system and which represents the causality structure

of events in an isomorphic way� With this de
nition� the relations �later�

and �at the same time� get a new and generalized but adequate inter�

pretation� Interestingly� it turns out that this notion of time is similar in

structure to Minkowski	s relativistic space�time model� We motivate the

concept of �vector time�� elaborate its properties� and discuss the analogy

to relativistic space�time�

� Distributed Computations and Time Diagrams

A distributed system consists of sequential processes which communicate solely
via messages� We assume that message transmission times are unpredictable and
that the processes don�t have access to a global clock or to perfectly synchronized
local clocks� With those assumptions� no process has an up�to�date and consistent
view of the global state� This is the cause for many interesting phenomena and
problems which characterize distributed systems and which are non�trivial to
solve ���� ��� �	� �
��

�This paper is based on the two earlier papers by the author �Virtual Time and Global

States of Distributed Systems� and ��Uber die relativistische Struktur logischer Zeit in verteilten

Systemen��
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Figure �� Two equivalent time diagrams�

The behavior of each process in the system is governed by an algorithm which
determines the sequence of local actions and the reaction of the process to in�
coming messages� The concurrent execution of the local algorithms� which is
coordinated by messages� forms a distributed computation� Formally� the execu�
tion of actions can be viewed as atomic events which are usually classi�ed into
send events� receive events� and internal events� Such an abstract distributed
computation can be depicted with the help of a time diagram �cf� Fig� �	 where
time moves from left to right�� Messages are drawn as arrows which go from left
to right� and events �which represent atomic actions	 are depicted by dots�

In a time diagram� the distributed computation is represented in a way an ide�
alized external observer would see it� if the observer is instantaneously informed
about the occurrence of an event� It seems to be clear� however� that the exact
global time at which an event happens is of no concern provided that the local
sequence of events is not changed and message arrows do always go from left to
right� Hence� a time diagram represents a whole class of executions which are
equivalent in a way that will become clear further down� In that sense the left
time diagram of Figure � is equivalent to the right time diagram� Informally�
the left diagram can be transformed into the right diagram by stretching and
compressing the horizontal process axes� Note that in the right time diagram
events s�� s�� s� are aligned vertically and connected by a straight vertical line�
Such 
cut lines� will play an important role further down�

In order to give precise meanings to the notions� we now provide some de�ni�
tions� We assume that an abstract distributed computation with a corresponding
time diagram is given� and that E denotes the set of its events which happen at
processes P�� ���� Pn�

De�nition ��� �global event order ���	�
Let ��� denote the smallest transitive relation on the set of events E� such that
e � e� for e� e�

� E if

��� e and e� happen at the same process and e is the immediate predecessor of
e� or

��It is true that there are certain implicit dangers in using such graphical representations�

because in every geometrical diagram time appears to be misleadingly spatialized� On the other

hand� such diagrams� provided we do not forget their symbolic nature� have a de�nite advan�

tage���� �From Mili�c �Capek�s philosophical critique of Minkowski�s space�time concept ��	
 and
its simpli�ed models� Further down we will see that our time diagrams are indeed very similar
to the diagrams which are used to represent Minkowski�s space�time model�
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Figure �� Consistent and inconsistent cuts�

��� e� is the receipt of a message which was sent by event e �i�e�� e� is the send
event that corresponds to the receive event e��

The re�exive closure of � will be denoted by �� Because we assume that in
a time diagram message arrows do only go from left to right� the ����relation
contains no cycles� The relation was called 	happens before
 by Lamport ���
because e � e� signi�es that e happens before e� � in the sense that e is drawn
to the left of e�� �i�e�� that e happens earlier than e� in global time�� but also in
the sense that e causally precedes e�� Note that the converse is not true� e � e�

does not necessarily hold if e is left of e� in a time diagram �cf� events a and c in
Figure ��� Obviously� the partial order ��� abstracts from the exact place in the
time diagram where an event is located� the two diagrams of Figure � therefore
depict the same partial order� The ����relation can be viewed as �potential�
causality� it can be depicted on time diagrams by paths which go from left to
right�

Corollary ��� �causal path��
The relation e � e� holds between two events e� e� of a computation i� there
exists a directed path �consisting of message arrows and fragments of process
lines traversed from left to right� from e to e� on a time diagram corresponding
to the computation�

The corollary follows from De�nition ���� intuitively its correctness becomes ev�
ident if one reads e � e� as 	e may in�uence e�
� Formally� it can be proved
by induction on the length of the path and by making use of the transitivity of
the ����relation� For example� in Figure � b � c �b is a direct predecessor of c�
and a � h �there exists a path from a via d� e� f to h�� Hence� a path in a time
diagram is merely a graphical representation of a causal chain�

Later� we also need the symmetric relation 	causally independent
� We de�ne
it as follows�

De�nition ��� ��jj��relation��
For two events e� e� � E the relation ejje� holds i� ��e � e�� � ��e� � e��

Obviously� for two events e� e� one has e � e� or e� � e or ejje�� Up to now� we did
not formally de�ne the notion of a distributed computation� We shall now do so
in a way which conforms to the informal view given above�
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De�nition ��� �distributed computation��
An �n�fold� distributed computation over an event set E is an n�tuple �E�� ���� En�
with a relation � � S�R of corresponding send events S � E and receive events
R � E �S � R � ��� such that each Ei � E is linearly ordered by a relation �i

and the following three conditions hold�

�� The event sets E�� ���� En are pairwise disjoint�
	� � is left�unique and right�unique�

� The smallest transitive relation � which ful�lls the two axioms

A�� a �i b � a � b

A�� �a� b� � � � a � b

is an �irre�exive� partial order�

Obviously� the totally ordered sets Ei represent the local computations� � rep	
resents the set of messages sent and received in the computation� and 
�
 is the
above	mentioned �happens before� relation which represents causality� Condi	
tion  of the de�nition requires the relation to be cycle free� Intuitively� this is
an obvious requirement� it guarantees that for each distributed computation it
is possible to draw a time diagram for which�as it is required by de�nition�all
message arrows go from left to right� If global time does also go from left to
right� and if the events on a process line are sorted according to the 
�i
	relation�
this means that the future cannot in�uence the past � a property which every
sensible notion of time should have of course�

� Cuts and Lattices

We aim at an adequate notion of time for distributed systems� Although we
assume that global time is not available� within a distributed system� we can
use global time as a starting point and assume that it �exists� for an idealized
observer who sees the whole time diagram of a computation at once� In such a
diagram� instants in global time are represented by vertical lines which cut all
process axes �simultaneously�� Since there is no canonical diagram for a given
distributed computation� this constructive de�nition of a global instant seems
to be problematic at �rst sight� However� all time diagrams which represent
the same computation are equivalent in the sense that they can be mutually
transformed by compressing and expanding the process lines� These �rubber band
transformations� are exactly those transformations on time diagrams which leave
the causality relation invariant� In that way� a vertical line cutting the process
lines at special additional cut events s�� ���� sn �cf� Fig� �� may be transformed in a

��Everybody knows that time �ows from left to right unless you are left�handed�� �Anony�
mous posting on the usenet electronic bulletin board��

�Be it whether we deny an absolute time reference for philosophical reasons� or whether we
argue more technically that local clocks cannot be perfectly synchronized�
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zigzag line� Independently of its shape� such a cut line separates the set of events
E in two disjoint sets� namely the �past� �i�e�� all those events located to the
left of the line� and the �future� �the remaining events�� In that sense� cut lines
qualify as a substitute for instants in global time� This motivates the de�nition
of a cut of a distributed computation	

De�nition ��� �local event order 
�l
��
The local event order ��l� is de�ned by e �l e

� i� e � e� and e� e� are events of

the same process�

Note that 
�l
 is the union of all 
�i
 de�ned on Ei�

De�nition ��� �cut��
A �nite subset S � E is a cut of E if �e � S � e� �l e� � e� � S�

That is� cuts are left�closed subsets with respect to 
�l
� One should observe
that a cut line is merely a geometrical object that cuts a diagram into two parts�
whereas a cut is a mathematical object� namely a set of events� To each cut line�
however� one can associate the set of the events to its left as a cut� and often it
is convenient to represent cuts by lines in a time diagram� A particular class of
cuts is of great interest	

De�nition ��� �consistent cut��
A �nite subset S � E is a consistent cut of E if �e � S � e� � e� � e� � S�

Because of �l � �� every consistent cut is a cut according to De�nition ���� Cuts
which are not consistent are called inconsistent�

Figure � shows cut lines of consistent �S�� S�� and of inconsistent �S�� cuts�
Because by de�nition a send event is part of a consistent cut if the corresponding
receive event is part of the cut� an inconsistent cut line is characterized by a
�message from the future� �i�e�� a message whose send event is to the right of the
cut line although its receive event is to the left�� Such messages� which traverse
the cut line �in the wrong sense�� are responsible for the fact that at least two cut
events si� sj are causally related in an inconsistent cut  obviously there exists a
causal chain from cut event si of the sending process to the cut event sj of the
receiving process �see Figure ��� For consistent cuts this is not the case� there all
cut events are pairwise causally independent�

Intuitively� vertical cut lines should be the adequate substitutes for instants in
global time� Hence� cuts with cut lines that can be made vertical are of particular
interest� The following theorem characterizes those cuts	

Theorem ��� �rubber band consistency criterion��
A cut line of a time diagram represents a consistent cut i� it can be transformed

into a vertical line by the rubber band transformation�

�



The following sketch shows how the proof can be constructed in a do�it�yourself
way� Cut a given time diagram with a consistent cut line along that line in two
parts� Then move the right part to the right until the two parts do no longer
overlap and are separated by a �vertical� gap� Message arrows that have been
cut must then be repaired by bridging the gap� They still go from the left to
the right because only the receive events have been moved to the right� �This is
a consequence of the fact that the cut is consistent�� The cut line can then be
drawn as a vertical line within the gap� Conversely� it is obvious that a message
which is responsible for the inconsistency of the cut �i�e�� which traverses the cut
line from the right to the left� cannot be drawn as an arrow going from the left
to the right in a time diagram with a vertical cut line�

Consistent cuts can be viewed as sets of events which did already happen�
Because with this temporal interpretation there are usually several events to the
right of a cut line which might be executed next in the current global state� the
�next cut	 is usually not unique� It is possible� however� to de
ne a partial order
�later	 on the set of all cuts� Informally� a cut S� is later than a cut S� if the cut
line of S� lies on the right of the cut line of cut S� �see Figure ���

De�nition ��� �later cut��
A cut S� is later than a cut S� if S� � S��

With the set theoretic de
nition of cuts according to De
nition ��� we obtain the
following theorem�

Theorem ���

With respect to �later� the cuts of a time diagram form a lattice�

Proof� Follows directly from the de
nition� A lattice is a partially ordered set
where any two if its elements have a greatest lower bound inf and a least upper
bound sup� Obviously� inf � S� � S� and sup � S� � S� for any two cuts S�� S��
�Note that inf and sup are left�closed with respect to �l�� �

Only the consistent cuts are relevant for the de
nition of a notion of time� They
do also form a lattice�

Theorem ��� �sublattice of consistent cuts��
For a given computation� the set of consistent cuts is a sublattice of the set of all

cuts�

Proof� One has to show that the consistent cuts of the computation are closed
under � and ��

�� Let S�� S� be two consistent cuts� Furthermore� let x � S� � S� and y � x�
Then y � S� because S� is consistent� and y � S� because S� is consistent�
Hence y � S� � S�� i�e�� S� � S� is consistent�
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��� Let x � S� � S� and y � x� Consider two cases�

�a� x � S�� Then y � S� because S� is consistent�

�b� x � S�� Then y � S� because S� is consistent�

Hence y � S� � S�� i�e�� S� � S� is consistent� �

The lattice structure of consistent cuts guarantees that for any two consistent
cuts S� and S� there is always a consistent cut later than both of them and
a consistent cut earlier than both of them� This can be extended to a �nite
set of consistent cuts� sup�S�� ���� Sk� � S� � ��� � Sk is later than S�� ���Sk �and
accordingly for inf�� This means that a set of 	points
 in time �which is the
temporal interpretation of consistent cuts� does always have a common future
and a common past�

� Logical Time

Our goal consist in de�ning a notion of time for distributed systems which� on
the one hand� is realizable within such systems �and should in therefore not make
use of global clocks� but� on the other hand� has some useful properties which
justi�es the name 	time
� For example� we would like to be able to assign time
values to events such that it is possible to infer potential causality between events
or to exclude it in the sense that a 	later
 event cannot in�uence an 	earlier

event� Furthermore� it would be nice if a global snapshot were consistent if all
local snapshot events are 	simultaneous
 with respect to the notion of time� We
will see that so�called vector time� which will be de�ned in the following section�
does indeed have this property�

The most obvious models for real time are the rational and the real numbers
together with their linear order� These sets are dense for any two numbers
there is another number that lies between them� This is di�erent for typical
logical models of time for distributed systems� In a distributed computation as
we de�ned it� nothing happens between two successive events� Hence time needs
only be advanced with the occurrence of an event and is therefore discrete� This
is nothing uncommon in computer science an event�driven simulation system is
a typical application where this is also the case� Such a model of time requires
that each event of the distributed computation gets a unique instant in time�
Formally� this means that a function C � E �� T must be found which assigns
a timestamp C�e� of a suitable set T to each event e � E� The comparison of
timestamps of di�erent events should allow to draw certain conclusions about the
relation of the events� It seems to be plausible that at least the notions 	earlier

or 	later
 should exist within the notion of time� Hence logical time should be
a partial order �T���� From an abstract point of view� the function C can be
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Figure �� Propagation of time knowledge�

called a logical clock� A reasonable requirement on C is that it conforms to the
causality relation�

�e� e�
� E � e � e� �� C�e� � C�e���

This condition is often called the clock condition� Stated verbally� it reads 	an
event e should get a smaller timestamp than an event e� if e can causally a
ect
e���

In his seminal article 	Time� Clocks� and the Orderings of Events in a Dis�
tributed System� ��� Lamport presented in ���� a scheme based on an integer
domain T for the values C�e� of the clock function C� His logical clock is realized
by a system of counters �one for each process� and a simple message handling
protocol� The scheme lacks a desirable property� however� because by mapping
the events onto linearly ordered integers some structure is lost� Events which
are causally independent get assigned timestamps as if they happen in a certain
order� Hence� by checking the timestamps of events� it is usually not possible to
assert that some event could not a
ect some other event� For that purpose� the
time domain T must represent the event structure E in an isomorphic way� This
means that the converse implication of the clock condition should also hold� This
is in fact possible with 	vector time� as will be shown in the following section�

� Vector Time

To motivate the concept of vector time discussed below� assume that each process
Pi has a simple logical clock implemented by a counter which is incremented by �
each time an event happens� An idealized external observer who has immediate
access to all local clocks knows at any moment the local times of all processes�
An appropriate structure to store this global time knowledge is a vector with one
component for each process� The example depicted in Figure � illustrates the
idea�

Because of message propagation delays in distributed systems� the instanta�
neous knowledge of the idealized observer cannot be realized� Our aim� however�

�



is to construct a mechanism by which each process gets � without extra messages
� an optimal approximation of this notion of global time� For this purpose each
process should be informed at the earliest possible moment about all events which
did already happen� For that� we equip each process Pi with a clock Ci which
consists of a vector of length n� where n is the total number of processes� A clock
Ci is initialized with the null vector� it �ticks� immediately before the execution
of an event by incrementing the value of its own component�

Ci	i
 �� Ci	i
 � �

Each message contains a vector timestamp t� where t is the vector time of the local
vector clock of the sender when the message is sent� By receiving a timestamped
message� a process learns about global time approximation of the other processes�
The receiver combines its own time knowledge Ci with the approximation t it
receives with the message by

Ci �� sup�Ci� t��

where sup denotes the componentwise maximum operation� The timestamp C�e�
of an event e occurring at process Pi is the value of clock Ci at the moment of
the execution of e� �For receive events this is the value after updating the clock��
Figure � illustrates the propagation of time knowledge and the updating of the
vector clocks�

Obviously� the events of process Pi are sequentially numbered by the i�th
component of clock Ci� Or� to put it di�erently� before event e� jC�e�	i
j� other
events did already happen on the same process� In fact� the vector timestamp
C�e� of an event e contains in a compact way the complete knowledge about
all those events from which e is �potentially� causally dependent� For example�
C�e�	k
 � j signi�es that event e depends on the �rst� the second���� the j�th
event of process Pk� but that it is not dependent of any later event of process
Pk� As an alternative to the operational characterization of the vector timestamp
C�e� of an event e� C�e� can hence be de�ned formally as follows�

De�nition ��� �vector timestamp of an event��
The vector timestamp C�e� of an event e is a vector of Nn such that for its i�th

component

C�e�	i
 � jfe�j e� is an event of process Pi � e� � egj�

One may easily check that this de�nition is realized by the above mentioned rules
for the handling of vector clocks and timestamps� In order to be able to compare
time vectors� we de�ne the following relations�

De�nition ��� �vector time order��
For two time vectors u� v we de�ne

�



u � v �� �i � u�i� � v�i��
u � v �� u � v � u �� v�

ujjv �� ��u � v� � ��v � u��

One should observe that ��� �and hence also ���� is a partial order� �jj�	 which
is a re
exive and symmetric �but non�transitive�� relation	 can be viewed as a
generalization of simultaneity of real time� However	 whereas in real time the
now� is merely a durationless point between past and future	 simultaneity in
vector time has a larger extension�

By De�nition ��� and by the above mentioned rules it is possible to assign
a time vector to each event� In a canonical way it is also possible	 however	 to
assign a time vector � �S� to a cut S�

De�nition ��� �time vector of a cut��
Let S be a cut� The vector de�ned by

� �S��i� � jfe � Sj e is an event of process Pigj

is called the time vector of cut S�

From De�nition ��� and De�nition ��� we get directly�

Corollary ��� �later time vector of cut��
S� is later than S� i� � �S�� � � �S���

By assigning time vectors to cuts	 the lattice structure of cuts or consistent cuts
is isomorphically mapped to the corresponding vector sets�

Theorem ��� �time lattice��
The time vectors of cuts form a lattice with respect to the partial order ���� the

time vectors of consistent cuts form a sublattice of the lattice�

Proof� For any two time vectors � �S��� � �S�� there exists the in�mum � �S��S��
and the supremum � �S� 	 S��� �

Besides their order�theoretic interpretation	 lattices do also have an algebraic
interpretation� If one de�nes two commutative and associative operations inf

and sup by inf�x� y� � u � u�i� � min�x�i�� y�i��	 and sup�x� y� � v � v�i� �
max�x�i�� y�i�� for all components i	 one can easily show that x � y � x �
inf�x� y�� The algebraic interpretation means that it is possible to compute �i�e�	
to execute algebraic operations� with time vectors and then use the interpretation
of the lattice as a partial order to compare time vectors�

Time vectors can be represented in an n�dimensional space yielding an inter�
esting pictorial description of the lattice� If one does only consider time vectors
associated to consistent cuts of a given computation �as will become clear further
down	 only such time vectors can appear as timestamps of events and messages�	

��
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Figure �� n�dimensional lattice and corresponding time diagram�

one gets esthetically interesting structures� For n � � these structures have the
shape of eroded cubes� Figure � shows an example for n � 	� In such a struc�
ture
 each path originating at the null vector and moving in the direction of the
diagonal determines a sequence of events which is a linearization of the causality
relation ���� Therefore
 each such path corresponds to a consistent observation

of the distributed computation� In general there are many dierent consistent
observations of a given distributed computation� Since the intersection of all lin�
earizations of a partial order yields the partial order itself
 the facts which are
common to all observations is precisely the underlying causality relation� The
eroded shape of the n�dimensional cube is due to the fact that time cannot al�
ways spread freely in all direction� some dimensions might be closed temporarily
because a send event must always be observed before its corresponding receive
event�

De�nition ��� assigns timestamps to events
 whereas De�nition ��� assigns
timestamps to cuts� The link between timestamps of events and timestamps of
cuts is established by the fact that the �causal past� of an event forms a consistent
cut�

De�nition ��� �causal past �e��
The causal past of an event e is de�ned by �e � fe�je� � eg�

Theorem ��� ��e is consistent��
For an event e � E� �e is a consistent cut�

The proof follows immediately from De�nition 	�� and De�nition ��� and from
the transitivity of ���� Now it becomes obvious that the timestamp of an event
is nothing but the time vector of its causal past�

Theorem ��� �time is causal past��

C�e� � � ��e��

Proof� � ��e��i�
def
� jfe� � �e j e� is an event of process Pigj � jfe� �

e j e� is an event of process Pigj
def
� C�e��i�� �

��



With the help of time vectors Theorem ��� �identi�es� an event with its causal
past� Seen in that way� vector time appears to be something quite natural 	 time
is the set of past events
 Time vectors just allow a compact implementation and
an algebraic representation 	 and hence a computationally tractable realization 	
of set theoretic operations on the causal past of events� The notion of time itself
is de�ned by the causal past of the events�

In order to prove our main Theorem ���� below� we need a result that char�
acterizes consistent cuts as closed sets with respect to causal past

Lemma ��� Let S be a consistent cut� Then e � S �� �e � S�

Proof�

��� ��� For e � S and x � e we have x � S for any x because S is consistent�
In particular we have x � �e� x � e� x � S� hence �e � S�
��� ��� From �e � S we have x � �e� x � S� Because e � �e� we have e � S�
�

Because the isomorphism of the two lattice structures entails � �S� � S�� �
sup�� �S��� � �S���� it is possible to generalize Theorem ��� to arbitrary consis�
tent cuts S

Corollary ���� Let S � fe�� ���� ekg be a consistent cut�

Then � �S� � sup�C�e��� ���� C�ek���

Proof� Because of Lemma���� S � �e
�
�� ������e

k
� Hence� � �S� � � ��e

�
�� ������e

k
� �

sup�� ��e
�
�� ���� � ��e

k
��� According to Theorem ��� this equals sup�C�e��� ���� C�ek���

�

We can now show that a stronger form of the clock condition holds for vector
time

Theorem ���� �isomorphism of causal structure and temporal structure��

�e� e� � E  e 	 e� �� C�e� � C�e���

Proof� e � e�
���
�� e � �e� ���� ���

�� �e � �e� ���� ���
�� � ��e� 
 � ��e��

���
�� C�e� 


C�e��� �Also note that di�erent events are assigned di�erent timestamps and that
each event has a unique timestamp�� �

Theorem ���� has an easy interpretation on time diagrams� An event e� has a
larger timestamp than event e if and only if there is a chain in the form of a
causal path from e to e�� Obviously� the value of a vector component can only
increase along such a path� If� conversely� an event e� has a larger timestamp
than another event e� then there must exist a path from e to e� along which the
�time knowledge� of C�e� is propagated� Theorem ���� does also indicate how
to test two events for causal independency
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Figure �� Light cones in Minkowski�s space�time�

Corollary ���� �e� e� � E � ejje� �� C�e� jjC�e���

Put somewhat sloppy	 the corollary asserts that exactly those events are mutually
independent which happen simultaneously�

� Minkowski�s Relativistic Space�Time

In this section we discuss the analogy between Minkowski�s space�time model on
the one hand and our time diagrams and partially ordered events on the other
hand� The analogy results from the relativistic e
ect which occurs whenever
the propagation delays of signals cannot be neglected� In fact	 because of the
limits imposed by the speed of light�	 real time is not linearly ordered but merely
a partial order	 just like vector time� In Minkowski�s model n � ��dimensional
space and one�dimensional time are combined together to give an n�dimensional
picture of the world� Because of the bounded propagation delays of signals in
this model	 an event a that happens at a certain space�time point can only a
ect
another event b if b lies in the light cone of a�

Figure � depicts the situation for n � � Events P and Q are causally in�
dependent	 whereas event S may a
ect event P �because S lies in the past light

cone of P � and P may a
ect R �because R lies in the future light cone of P ��
The �potentially a
ects� relation is transitive �if X is in the past light cone of Y
and Y is in the past light cone of Z then X is in the past light cone of Z�	 but
independency is not transitive� P and Q are mutually independent	 as well as Q
and R� However	 P and R are not causally independent�

For n �  the light cones form a lattice� Figure � depicts the construction�
The future light cone of the supremum is formed by the intersection of the two
future light cones	 and the intersection of the two past light cones forms the
past light cone of the in�mum� By identifying a cone with its originating point	
the lattice structure of the cones is mapped onto the space�time points� �This
corresponds to our identi�cation of cuts and cut lines��

�Interestingly� the French physicist Paul Langevin calls the speed of light the �speed limit

of causality� in the English translation of his works�
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Figure �� Isomorphism of vector time order and light cone order�

The rubber band transformations mentioned in Section �� which change the
metrical but not the topological structure of time diagrams� and hence leave
the causality relation invariant� correspond to the so�called Lorentz transforma�
tions of space�time� These are causality preserving transformations of coordinates
which leave the structure of light cones invariant�

With vector timestamps it is possible to check for two given events whether
they are causally related or not� The cone structure of space�time yields a similar
criterion� If c denotes the maximum attainable speed� then two events e� and
e� with coordinates �x�� t�	 and �x�� t�	 are causally related if one of them lies
within the cone of the other one� i�e�� if c� �t�� t�	� � �x�� x�	� � 
� This can
be generalized to n�dimensional spaces �n � �	 by de�ning the relation

U � V ���
n��X
i��

�ui � vi	
� � c��un � vn	

� � un � vn

for two arbitrary space�time points U � �u�� ���� un	� V � �v�� ���� vn	� Here� the
n�th dimension takes the role of time� Usually� c is normalized to � which means
that the spatial units are �light years� if time is measured in �years�� One can
show that this light cone relation is a partial order and that for any two points
there exists a point which is greater than both of them�

Interestingly� for n � � vector time order and light cone order are basically
identical� By considering normalized past cones with c �  and turning the whole
system counterclock�wise by ��� �see Figure �	� one sees that the �future� of a
point P consists of all those points which lie above and to the right of P � Hence�
for two points P � �p�� p�	� Q � �q�� q�	 one has P � Q if and only if p� � q�
and p� � q�� According to De�nition ��� this can be written in a �vectorial way�
as �p�� p�	 � �q�� q�	� This means that for n � � vector time and space�time have
basically an identical structure�

It is also possible to �nd a suitable interpretation of light cones in vector time�
The past cone bP of a space�time point P consists of all those points Q which can
a�ect P � i�e�� bP � fQ jQ � Pg where ��� is the light cone order de�ned above�
Formally� this corresponds to our de�nition �e � fe� j e� � eg of the causal past
of an event �cf� De�nition ���	� In a similar way it would be possible to de�ne
the �causal future� 	e � fe� j e � e�g of an event which corresponds to the

�



future cones� Because in a time diagram no event of �e can be to the right of
e� the �past cone� �e of an event is indeed completely located to the left of the
event� Usually� however� such an abstract cone does not have the perfect shape
of a geometrical cone� But since the abstract cones �e or �e represent consistent
cuts �cf� Theorem ���	� it is possible to draw an abstract cone in a cone
like way
by using a similar construction as sketched in the proof of Theorem ����

For our real world relativistic space
time yields an image of reality which is
more accurate than linear �standard time�� Its close analogy to vector time is
not accidental � both models assume that cause and eect are not atomic and
that hence some other �causally independent	 events may happen in between�
The analogy indicates that vector time might be the �correct� model of time
for distributed systems� In fact� vector time is a useful concept in the theory of
distributed computations ����� It has been used in distributed debugging systems
��� ��� for measuring the degree of concurrency of distributed computations ���
���� to implement consistent views in distributed databases ���� �� ��� �� ���� to
compute globally consistent snapshots ����� and to implement so
called causal
broadcasts ���� Several optimizations to reduce the amount of information of the
general scheme ���� ��� or to generalize the principle have been proposed ���� as
Charron
Bost showed in ���� however� there is in the general case no more compact
representation of the causality structure than vector time�

The author would like to thank Bernadette Charron�Bost and Reinhard Schwarz for helpful

remarks on an earlier version of the paper and for fruitful discussions on the general concepts

of causality and vector time�

References

��� M� AHUJA� T� CARLSON� GAHLOT A� Passive�space and Time View of Com�
puting� Technical report� Computer and Information Science Research Center�

Ohio State University� Columbus� �����

��� K� BIRMAN� A� SCHIPER� P� STEPHENSON� Lightweight Causal and Atomic
Group Multicast� Technical Report TR �������� Computer Science Department�

Cornell University� �����

�	� B� CHARRON�BOST� Combinatorics and Geometry of Consistent Cuts
 Appli�

cation to Concurrency Theory� In� J�C Bermond� M� Raynal �eds� Proc� of the
�nd International Workshop on Distributed Algorithms� Springer�Verlag LNCS�
pp� 	
�
�� �����

��� B� CHARRON�BOST� Concerning the Size of Logical Clocks in Distributed Sys�
tems� Information Processing Letters� 	�
����� �����

��



��� J� FIDGE� Dynamic Analysis of Event Orderings in Message�Passing Systems�
PhD thesis� Department of Computer Science� The Australian National Univer
sity� �����

�	� M� FISCHER� A� MICHAEL� Sacri
cing Serializability to Attain High Availability
of Data in an Unreliable Network� In ACM SIGACT�SIGOPS Symp� on Principles
of Database Systems� pages ����� �����

��� D� HABAN� W� WEIGEL� Global Events and Global Breakpoints in Distributed
Systems� Proc� ��st Hawaii International Conference on System Sciences� Vol� II�
pp� ������	� �����

��� D�B� JOHNSON� W� ZWAENEPOEL� Recovery in Distributed Systems Using
Optimistic Message Logging and Checkpointing� Journal of Algorithms� �������	�
���� �����

��� L� LAMPORT� Time� Clocks� and the Orderings of Events in a Distributed Sys�
tem� Comm� of the ACM ��
�� pp� 		��	�	� �����

���� B� LISKOV� R� LADIN� Highly�Available Distributed Services and Fault�Tolerant
Distri buted Garbage Collection� Proc� of the 	th ACM Symposium on Principles
of Distributed C omputing� pages ����� ���	�

���� F� MATTERN� Verteilte Basisalgorithmen� Springer�Verlag� Informatik�
Fachberichte Bd� ���� �����

���� F� MATTERN� Distributed Control Algorithms �Selected Topics�� F� Oz�
guner �Ed� Parallel Computing on Distributed Memory Multiprocessors� Springer�
Verlag� �����

���� S� MELDAL� S� SANKAR� J� VERA� Exploting Locality in Maintaining Poten�
tial Causality� Technical Report CSL�TR�����		� Computer Systems Laboratory�
Stanford University� �����

���� M� RAYNAL� Synchronisation et Etat Global dans les Syst�emes R�epartis� Eyrolles�
�����

���� M� RAYNAL� M� MIZUNO� M� NEILSEN� Synchronization and Concurrency
Measures for Distributed Computations� Technical Report 	��� IRISA� University
of Rennes� France� �����

��	� R� SCHWARZ� F� MATTERN� Detecting Causal Relationships in Distributed
Computations� In Search of the Holy Grail� Technical Report ������� Department
of Computer Science� University of Kaiserslautern� Germany� �����

���� M� SINGHAL� A� KSHEMKALYANI� An E�cient Implementation of Vector
Clocks� Technical report� Dept� of Computer and Information Science� The Ohio
State University� �����

���� R� STROM� S� YEMINI� Optimistic Recovery in Distributed Systems� ACM
Transactions on Computer Systems� ����������	� �����

��



���� G� TEL� Topics in Distributed Algorithms� volume � of Cambridge International

Series on Parallel Computing� Cambridge University Press� Cambridge� U�K��
�����

���� M� 	CAPEK� Time
Space Rather than Space
Time� Diogenes� �������
��� �����

���� K� VENKATESH� T� RADHAKRISHNAN� H�F� LI� Optimal Checkpointing and
Local Recording for Domino�Free Rollback Recovery� Information Processing Let�

ters ��� pp� �����	�� �����

��




