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Abstract. While commercial solutions for precise indoor positioning exist, they are 
costly and require installation of additional infrastructure, which limits opportunities 
for widespread adoption. Inspired by robotics techniques of Simultaneous Localization 
and Mapping (SLAM) and computer vision approaches using structured light patterns, 
we propose a self-contained solution to precise indoor positioning that requires no ad-
ditional environmental infrastructure. Evaluation of our prototype, called TrackSense, 
indicates that such a system can deliver up to 4 cm accuracy with 3 cm precision in 
rooms up to five meters squared, as well as 2 degree accuracy and 1 degree precision 
on orientation. We explain the design and performance characteristics of our prototype 
and demonstrate a feasible miniaturization that supports applications that require a sin-
gle device localizing itself in a space. We also discuss extensions to locate multiple de-
vices and limitations of this approach. 

1   Introduction and Motivation 

We introduce a solution to indoor localization, TrackSense, that requires no additional 
infrastructure in the environment and provides 3D positioning and orientation data that 
performs well against existing research and commercial solutions. Although we have seen 
great progress toward the goal of indoor localization, almost all of the solutions that offer 
precise (few centimeter) indoor localization have been limited to techniques that require 
the introduction of new infrastructure to the physical space (e.g. cameras or beacons). 
These solutions are often costly and typically require time-consuming installations, and it 
is not easy to move the instrumentation from one space to another. Although existing 
commercial positioning systems are adequate for prototyping user experiences, their ulti-
mate success relies on a localization approach that is inexpensive and easily deployed. 



 

TrackSense is appropriate for situations where the localized device has a clear view of the 
walls and ceilings. By centralizing all computation to a single, small device, we reduce 
cost and substantially increase the number of places the localized device can be used. 

In addition to the inherent technical challenges, there are several motivating applica-
tions in which a single computational device benefits from precise location. Patel et al. 
demonstrate a see-through augmented reality, handheld device capable of performing 
precise at-a-distance interaction [20]. Their iCam device provided simple authoring and 
retrieval of digital content attached to physical objects, as well as manipulation of digital 
content in an augmented reality game. The iCam relied on a commercial ultra-wideband 
positioning system for localizing the handheld. Cao and Balakrishnan demonstrated the 
use of a handheld projector for viewing and interacting with multiple dynamically defined 
information spaces projected in the physical space [5]. Their application used a commer-
cial camera-based motion capture system to determine the pose and position of the projec-
tor. In addition to these research prototypes, many examples of augmented reality rely on 
precise tracking of an object (such as an individual’s head) and these applications would 
be improved by any solution that would speed deployment in multiple spaces.  

TrackSense determines its distance and orientation to fixed large planes in a space (i.e., 
walls and ceilings) and uses that information to calculate its 3D position and pose in the 
room. Inspired by robotics localization and camera-projector research, our solution uses a 
camera to locate and track a grid pattern projected onto surfaces in the camera’s field of 
view. This solution is more accurate and reliable than standard computer vision feature 
extraction techniques, because the exact feature (the grid pattern) is known and ever-
present in the camera’s view. It also provides a useful complement to traditional stereo 
vision, which does not perform well on plain surfaces. In addition, our technique provides 
information regarding its pose that is not available with standard ultrasonic or laser range 
finding solutions. Combining our solution with less precise room-level positioning sys-
tems we can provide localization within an entire world coordinate frame. Our current 
prototype is bulky and only demonstrates localization of a subsection of any given room. 
However, we also describe a miniaturized system that can be extended to an entire room. 

2   Related Work 

Indoor location technologies have been a long-studied topic in pervasive and ubiquitous 
computing. Hightower and Borriello provide an overview of the various location technol-
ogies and techniques [14]. The two basic approaches are to build the entire  infrastructure 
from the ground up (e.g., Ultra-wideband [35], ActiveBadge [37], Cricket [25], Vicon 
[36], NorthStar [21] and Active Bat[1]) or to leverage existing infrastructure that can 
yield localization, either through triangulation or fingerprinting (e.g., 802.11 work such as 
RADAR [2] and Place Lab[15], GSM Cell Towers [22], Bluetooth [19], and powerlines 
[24]). Typically, solutions that offer precise indoor localization of a few centimeters use 
the first approach of installing new environmental infrastructure that is both expensive 



 

and hard to move, thus limiting location-based applications to a few highly specialized 
environments. Although researchers are exploring ways to leverage existing public infra-
structure, the solutions are currently limited to resolutions of a few meters (room-level). 

The robotics community has a long history of exploring ways to localize autonomous 
robots without having to install custom infrastructure or gather a priori topological know-
ledge of the environment. Researchers have extensively studied the use of highly precise 
laser or ultrasonic range finders to automatically construct a feature map of the environ-
ment and then later consult it for localization [9, 18, 34]. This class of techniques is called 
Simultaneous Localization and Mapping (SLAM). A visual variant of SLAM, visual 
SLAM (vSLAM), builds a map entirely using vision [7, 30]. SLAM solutions typically 
employ various statistical and probabilistic models for localization. In addition, SLAM is 
a recursive process that evolves over time to improve accuracy and address changes in the 
environment. Although inspired by robotics, our solution does not rely on a statistical 
model or the construction of a complete map of the environment.  

Vision-based techniques extract features from the physical environment, such as de-
tecting planar surfaces for 3D model extraction [3, 6, 8, 17, 27, 33]. One limitation of 
purely vision-based techniques is the requirement of easily discernible and static features 
in the environment. Features many not always be available, such as on single-colored or 
plain walls. Additionally, lighting conditions may change the way features appear at dif-
ferent times. In our solution, the features (projected grid) are placed artificially in the 
environment to ease feature extraction. Our solution works best on the plain surfaces on 
which other computer vision approaches such as stereo vision fail. However, stereo vision 
techniques would be complimentary when the device is used in more textured spaces. 

Our approach with TrackSense is similar to previous vision work using structured light 
to extract physical feature information from an object, which use projected coded patterns 
of light at an object to extract the 3D features of that object [3, 29]. Other research has 
used the detection of structured light on a planar surface to automate projector calibration 
[31, 32]. These solutions temporally encode different structured light patterns; we focus 
on a static pattern produced by a laser to ensure a small, low-cost solid-state solution. 

Finally, augmented reality researchers have explored using fiducials (such as barcodes 
or 2-dimensional glyphs) to determine distance and pose to labeled objects and surfaces 
[12, 28]. However, large glyphs are needed for long distances and a number of them must 
be placed in the environment to cover a large space. In addition, glyphs are not always 
aesthetically pleasing unless they are blended with the décor of the environment. Our 
approach can be made invisible to the user by using infrared lasers. 

3 System and Implementation Details 

TrackSense projects a grid pattern into the environment to locate planes (walls) and inter-
sections (corners). By detecting three orthogonal planes (two walls and a ceiling or floor), 
the system can recover its position and orientation with respect to that corner. By using a 



 

3-axis accelerometer and magnetometer (compass), the unit can determine which corner 
of a room it is looking at, and hence, its position and orientation with respect to the 
room’s coordinate frame. Practically, several TrackSense units (2-5) angled in different 
directions can cooperatively identify three planes within their combined views. This sec-
tion discusses the implementation of a single TrackSense unit and how it obtains distance 
and orientation measurements from one or more planes it observes in the environment. 
 

      
Figure 1: Left: Operating TrackSense prototype and its components. Right: A miniaturized design 
prototype with laser diode, camera, and 400 MHz GumStix computer. 

3.1 Hardware 

TrackSense has a grid projector and a camera (see Figure 1). We used a 2000 Lumen DLP 
projector, which simulates a grid projecting laser diode. We used a projector to allow for 
easy prototyping of different sizes and shapes of projected grids. In an actual engineered 
solution, the relatively large desktop projector would be replaced with a single laser diode 
and grid diffraction lens, possibly projecting infrared light to make the system's operation 
imperceptible. For our prototype camera, we used a Logitech QuickCam Pro 4000 USB 
webcam with VGA (640x480) resolution. Our prototype system also had a custom-built 
magnetometer for a cost of $50 USD with a resolution of about 2°. In an actual system, 
several TrackSense units would share a 3-axis accelerometer and magnetometer. For 
prototyping, these components were connected to a desktop PC running our software, 
which was written in C++ using Intel's OpenCV and the VXL computer vision libraries. 
 
 
Projected Grid & Camera Calibration.  
As with all stereo vision devices, for a TrackSense unit to operate correctly, the grid pro-
jector and camera must be calibrated, both with respect to each other and with respect to a 
ground truth or world coordinate system. By using point correspondences between the 
grid projector and the camera using a known calibration rig, we can find the Fundamental 
matrix, F that encodes the relationship between the grid projector and the camera. The 



 

Fundamental matrix is defined by the equation x’T Fx = 0 for any pair of matching points 
x ↔ x’ in two images. In other words, if two points x and x’ correspond, the equation 
described above evaluates to 0. Note that mathematically, the grid projector is assumed to 
be a second camera, with grid line intersections at specific points in the virtual grid “im-
age.” We use F to help determine point correspondences as described in Section 3.2.3. By 
using known world coordinate points on our calibration rig, we can also calculate the 
projective matrices, P and P`, between the world coordinate system and the camera and 
virtual grid “camera” that is used to determine the location of detected points with respect 
to the TrackSense unit. We computed this standard multiple-view calibration with a cus-
tom rig using the calibration routines from OpenCV [13]. In actual operation, this calibra-
tion would be performed a single time at the time of manufacture. 

3.2 System Operation 

As the grid is projected onto and reflected from objects in the environment such as the 
ceiling and walls, the camera detects the lines using a custom edge detection algorithm, 
Using these detected lines, we can find the location of each grid intersection point. Be-
cause we are integrating data from hundreds of pixels for each line, we can develop a 
mathematical model of the line that is more accurate than any single pixel. Hence, we can 
measure locations of intersection points with sub-pixel accuracy. By triangulation (using 
the same math as standard stereo vision), we can find the distance and orientation to each 
point relative to the camera. Using multiple points, we can detect planes and corners 
where multiple planes meet. From this, we can recover the orientation and position of the 
TrackSense unit with respect to the corner. If we use a 3-axis accelerometer and magne-
tometer to determine which corner we are observing, we can locate the TrackSense unit 
within the room. Furthermore, if we already can identify the room using a less accurate 
positioning system, such as GSM fingerprinting [22], the within room position translates 
to an accurate world position. In this section, we describe elements of this procedure in 
more detail. 

3.2.1 Line Detection 
To determine where the grid intersection points occur in the camera image, our system 
must first detect the projected lines from a potentially noisy image. Using a standard Can-
ny edge detection algorithm would detect the grid, but it would also detect many other 
lines in the image (i.e., edges of windows, picture frames, desks, pencils, etc). One way to 
enhance the detection of the projected grid would be to take pairs of images, one with the 
grid turned off, and one with it turned on, and then subtract them to obtain the location of 
only the grid. However, this reduces the frame rate of the system by one-half, requires 
precise synchronization between the grid projector and camera, and assumes that the 
system is not in motion between subsequent frames. Custom hardware operating at ex-
tremely high frame rates where these assumptions may be valid could make use of this 
subtraction technique to greatly simplify the line detection algorithm. 



 

However, our prototype uses a web cam with limited frame rate and no synchroniza-
tion to the grid projector. We also wanted our system to operate while in motion and be 
able to provide a new orientation and position with every camera image. To enable this, 
we developed an enhanced edge-finding algorithm that detects projected grid lines while 
ignoring many environmental lines. Figure 2 (center) shows results obtained using a stan-
dard implementation of the Canny edge detection algorithm [4]. The Canny algorithm 
looks for gradients in the image, detecting lines for both low-to-high and high-to-low 
transitions. Naturally occurring lines in the environment (i.e., from a corner or edge) typi-
cally only have one of these gradients, either increasing or decreasing, as the edge typical-
ly separates objects of different reflectance levels. However, projected lines are typically 
brighter than the objects they fall upon, leading to both a rising and falling gradient on 
either side of the line. As shown in Figure 2: 

1. For our single luminous projected line, two edges are detected: One for the in-
creasing gradient and one for the decreasing gradient. 

2. Each edge of the black square (upper left) results in exactly one detected edge. 
We can obtain better results by modifying a gradient-based edge detection algorithm so 

that a positive gradient followed by a negative gradient of similar magnitude is used to 
detect a line. This leads to a zero-crossing edge detection algorithm that uses the 1st de-
rivative instead of the 2nd derivative. Figure 2 shows the result of such an algorithm. This 
helps reduce both the ambiguity problem and the false positives. 

 

                                   
Figure 2: Left: A line projected onto a wall and a black square representing an object in the envi-
ronment. Middle: Results obtained applying Canny edge detection to the image on the left. Right: 
Result obtained applying the gradient based edge detection algorithm we developed. 

                   
Figure 3: Left: Zoomed in image of two intersecting lines. Right: The same lines from the left 
superimposed with lines detected by our line finding algorithm. 



 

 3.2.2 Intersection Points 
Using the edges detected from the projected grid, a Hough transform can determine the 
parameters of each line [11]. By mathematically determining the intersection point of each 
pair of lines, we obtain the position of these points with sub-pixel accuracy. Figure 3 
shows an intersection of two projected lines in our camera view, and an overlay of the 
detected lines (blue) and intersection point (center red dot). Our prototype used a grid of 9 
vertical lines and 7 horizontal lines, which corresponded to our 4:3 aspect ratio camera, 
giving a maximum of 63 detectable points. 

3.2.3 Point correspondences and 3D reconstruction 
An important step of reconstruction is the correct identification of point correspondences 
between two views. To determine the orientation and distance to any point in the envi-
ronment, a stereo rig must identify where that point appears in both camera views. Tradi-
tional stereo vision algorithms [11] rely on distinctive textures in the pair of images to 
determine which points from the left camera image corresponds to a particular point in the 
right camera image. However, we are unable to use a similar method for two reasons. 
First, our system needs to be able to work on plain walls without features, which lack the 
texture that traditional stereo vision algorithms rely upon. Second, we are using a projec-
tor as a virtual “camera”. The advantage of the projector is that our system will work on 
walls without texture by projecting its own features, but the disadvantage is that the grid 
is regular and each intersection point looks very much like all the others.1 

Given a grid intersection point in the projector “view”, the correct corresponding point 
in the camera view must to be found. In order to reduce the search space for this point the 
epipolar constraint from the Fundamental matrix is applied [13]. Figure 4 shows epipolar 
lines for our prototype in which the camera and grid projector were mounted horizontally.  

To determine point correspondences we use a cost function that is the sum of the 
squared distance to the epipolar line and the position of that point in the previous image 
(timestep t-1). Using these cost functions, the Hungarian algorithm [16, 20] minimizes the 
total cost and produces the best match in correspondences between the grid intersections 
and the detected line intersections in the camera image. In some cases, intersection points 
may be missing from the camera image. For example, lying on a dark or textured object or 
falling outside the view of the camera would prevent detection by the edge and line find-
ing algorithms. To prevent errors in these cases, the cost for questionable points are set to 
infinite cost (allowing the Hungarian algorithm to skip that point) if the distance to the 
epipolar line was greater than a pre-set threshold.  

Once point correspondences are known, the projective matrices, P and P` obtained in 
the initial system calibration are used to calculate the 3D position of the point. Linear 

                                                           
1 As our prototype uses a data-projector to simulate a laser-grid, we could have used textured pat-

terns (as used in 3D reconstruction using structured light [3, 29]). To work with very small and 
inexpensive laser diodes, we limited the output of the projector to a uniform static image. With 
custom diffraction lenses on a laser diode it would be possible to produce a laser pattern that, 
while static, would not be regular, allowing for easier calculation of point correspondences.  



 

triangulation is used to obtain the desired 3D position of a point. More details of the linear 
triangulation approach, along with methods for improving its accuracy can be found in 
[13].  

            
Figure 4: Left: A projected grid. The yellow dots show points of intersecting lines. Right: Left 
image superimposed with epipolar lines. 

3.2.4 Identifying Planes  
A TrackSense unit models walls, ceilings or floors as large planes. After triangulation, we 
have data points that may represent points on the surface of planes, or may be noise, ei-
ther from random objects in the environment or measurement errors. In order to develop a 
robust algorithm that can detect planes correctly, several issues arise. 
• The exact number of planes in each frame is unknown. Because each TrackSense unit 

has a finite field of view and operating range, we do not expect to detect more than a 
maximum of 3 planes of usable size (a corner of two walls and a ceiling or floor). 

• It is not known which points lie on the surface of the same plane and form a group. 
• A significant amount of points represent noise and have to be classified as outliers so 

they do not affect the correct computation of a plane.  
Our approach uses the RANSAC (RANdom Sample Consensus) algorithm [10]. First, 

three  points which specify a plane are randomly selected, and every remaining point is 
tested to see if it is close to the candidate plane. We have found that a threshold of 3 cm 
includes most valid points while eliminating most outliers. After selecting many possible 
random planes, the one with the largest group of supporting points is chosen. The valid 
points are then used to compute a least mean square solution for the actual position and 
orientation of the plane, resulting in better accuracy than any of our single point mea-
surements. Planes without enough supporting points are discarded. The algorithm termi-
nates with failure to detect a plane. Otherwise the previous steps are repeated in order to 
find the next plane. We have found that with a 7 by 9 grid (63 total points) a threshold of 
18 points generally indicates that a valid wall, floor, or ceiling plane has been found. 
Figure 5 shows a point cloud representing points on the surface of two walls of a corner 
(left), and the planes that have been fitted to the points using the approach described 
above (right). Once the four parameters characterizing each plane have been determined, 
the distance from the TrackSense unit to the plane can be determined geometrically. 
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Figure 5: Left: Point cloud from a two wall corner. Right: Point cloud plus the fitted planes. 

3.2.5 Determining Position and Orientation 
Depending on the number of walls, we discuss the different strategies for determining the 
position and orientation of the device. 

One Wall: A TrackSense unit that can observe a wall can determine its orientation with 
respect to that wall, and distance from the wall. With a single wall in view it can act as an 
enhanced ultrasonic tape measure, being able to calculate the direct distance from the unit 
to the closest point on the wall. Unlike an ultrasonic tape measure, the TrackSense unit 
does not have to be pointed directly at the closest point on the wall to make this measure-
ment, as it also knows the orientation of the wall. 

Two Walls: By observing two orthogonal walls, a TrackSense unit is able to determine 
its (X,Y) position with respect to the corner. If it makes the assumption that the two walls 
are vertical (at 90 degrees to the ground plane) the TrackSense unit can determine its own 
orientation with respect to the ground plane. Note that the two walls do NOT have to form 
a 90 degree angle with each other, only with the ground plane. 

By making use of a magnetometer a TrackSense unit can determine its global bearing, 
and determine which corner of the room it is observing, which leads to a global (X,Y) 
position within the room. Also note that if the room has a different angle at each corner 
(as opposed to the standard 90 degree corner) the TrackSense unit can measure the angle 
between each set of two walls and use that to “fingerprint” the corner that it is looking at. 
Although two walls do not provide a Z (or height) measurement, if the unit is held at a 
consistent height, or mounted on a mobile base the Z component may be stable. While an 
ultrasonic transducer could be used pointing towards the ground or ceiling to provide an 
estimate of Z, we recommend the use of a second TrackSense unit for redundancy. 

Three Walls / Corner: By observing three orthogonal planes (such as the intersection 
of two walls and the ceiling or floor) a TrackSense unit can determine its full 6 degree of 
freedom position and orientation with respect to the corner. If it can identify the corner, it 
can also obtain its global position and orientation within the room. Note that our proto-



 

type only has enough resolution and field of view to accurately detect two planes simulta-
neously. Hence, the analysis in Section 4.2.2 assumes a constant Z value (the unit sat on a 
wheeled platform). We expect in actual operation, 2-5 TrackSense units would operate on 
the same rigid body. Even if three TrackSense units could each only detect a single 
unique plane, the combination of distance and orientation data from each TrackSense unit 
would be equivalent to a single “super TrackSense” observing the three planes directly. 

3.2.6 Adding a Magnetometer & Accelerometers 
The previous analysis assumes that the TrackSense unit is somewhat vertical. If it is held 
upside down, its yaw, pitch, and roll measurements will be incorrect by 180 degrees, and 
if held sideways it will mistake the floor and ceiling for walls and visa versa. If the 
TrackSense unit will be held generally level (within 30 degrees), the use of accelerometer 
data is not strictly necessary for satisfactory operation. However, most solid state magne-
tometers integrate a 3 axis accelerometer (and 2 orthogonal magnetometers) to ensure that 
the compass bearing is accurate even if the unit is tilted. By using data from a 3 axis acce-
lerometers we can enhance the TrackSense unit in two ways:  
• By detecting the 1G acceleration of gravity and magnetic north the unit can operate in 

any orientation and provide correct yaw, pitch, and roll data (Excepting zero-gravity 
environments). 

• The data from inexpensive accelerometers (with fast update rates, but moderate drift) 
can be used to provide updated position and orientation data between camera frames 
or while the cameras do not have a view of enough planes to obtain full 6 DOF data. 

4 Performance Evaluation 

We conducted four experiments to determine the accuracy and precision of the system’s 
position and orientation measurements. The first two involved measuring the distance and 
orientation with respect to a single wall or plane. The third measured the ability of a sin-
gle TrackSense unit to measure the angle between two walls or planes. The fourth expe-
riment used the distance and orientation to the intersection of two walls to measure the 
(2D) location of the TrackSense unit in a room. These tests allow us to report on the over-
all positioning and orientation accuracy of our prototype and predict the accuracy and 
precision of a system using multiple TrackSense units to position and orient itself within a 
room.  For accuracy, we report the difference between the system’s determination of its 
location and the measured ground truth.  For precision, we show the smallest discernable 
position unit by observing the variations of the system’s reported position at specific 
locations.  



 

4.1 Distance and Orientation to a Single Wall 

Figure 6 (left) shows the single wall experimental setup. At each test point 300 consecu-
tive samples were taken. In the two experiments, we varied the prototype’s distance and 
angle to the wall while keeping lighting constant at normal office illumination levels. 

 

        
Figure 6:  Left: Experiment set-up for one wall experiment with projected grid. Right: Two wall 
experiment setup with projected grid. In both experiments, the apparatus was at a fixed height.  

4.1.1 Distance 
In this experiment, the apparatus was pointed straight towards one wall and the perpendi-
cular distance was measured as the ground truth. We took measurements at nine points 
ranging from 75cm to 325cm from the wall. The TrackSense prototype has a minimum 
range slightly under 75cm (due to geometric constraints), and the optimal working range 
extends to 275cm, although less accurate results can be obtained up to 350cm.  

The accuracy of the system is shown in Figure 7. The straight blue line represents the 
result of a least mean square linear regression for the sample points. The distance between 
the measured and the actual data closely follows a linear function (y=ax+b). This syste-
matic error comes from the fact the lines from the projector increase in thickness as the 
apparatus is moved farther back, thus shifting the detected lines farther to the left. Using a 
true laser grid would mitigate this problem substantially, although there would still be a 
slight systematic error. However, because the system error is linear, a correction factor 
can be applied at the factory to improve the overall accuracy. This correction factor is a 
simple offset value learned through experimentation. When we applied the linear correc-
tion factor, our corrected accuracy was between 3-4 cm. 

Within the working range, the precision is on average 2 cm (see Figure 7). The results 
indicate that the standard deviation increases quadratically with increasing distance from 
the wall. As the area imaged by our camera increases with the square of the distance, this 
curve corresponds to the expected reduction in sensor resolution with respect to wall area. 



 

 Precision decreases drastically near 3 meters. Several factors cause the system perfor-
mance to begin degrading at this point. As the distance from the TrackSense unit to the 
wall is increased, the intensity and size of the projected lines in the camera image is re-
duced until the edge detection algorithm can no longer successfully identify all lines. 
With fewer lines, fewer points are detected, and more incorrect point correspondences are 
made, leading to more outliers for the RANSAC algorithm. Increasing the resolution of 
the camera and using a brighter laser grid projector would increase the effective working 
range. 

 

     
Figure 7: Accuracy (left) and precision (right) of distance facing a single wall. 

   
Figure 8: Accuracy (left) and precision (right) for angle measurement towards one wall. 

4.1.2 Orientation 
We also characterized the system’s ability to determine its orientation with respect to a 
single wall or plane. We measured the angle between the prototype and a wall at six dif-
ferent angles: 0,10,20,30,40 & 45 degrees. At each position, 300 samples were collected 
to calculate the device's precision. The TrackSense prototype was located 120 cm from 



 

the wall, and swiveled from 0 degrees (directly facing the wall) to 40 degrees in 10 degree 
increments, and a final measurement was taken at 45 degrees. Beyond the 45 degree angle 
we expect the TrackSense unit would have a less acute angle to an adjacent wall. 

Over the tested 0 – 45° range, the TrackSense prototype has an accuracy of  2° or bet-
ter and has a precision of  1° or better (see Figure 8). We attribute the slight decrease in 
precision and accuracy as the angle increases to the smaller surface area that is visible to 
the camera as the incident angle is increased. We did not measure angles beyond 45 de-
grees because in standard operation we expect the TrackSense unit to have a view to an 
adjacent wall with a less-acute angle. 

4.2 Two Wall Experiments 

We investigated using our prototype to measure the angle between two walls, as well as 
using the distance and orientation from a known corner to measure the (X,Y) location of 
our prototype within a room (see Figure 6). All measurements were taken with the grid 
centered horizontally in the corner and the TrackSense unit directly facing the corner. 

4.2.1 Angle between two walls 
The ability to calculate the angle between intersecting planes is important in recognizing 
unique corners (e.g., an odd shaped room where each corner has a different angle). For 
the two wall angle experiment, a movable surface against the corner of a room approx-
imated a second wall, and measurements were taken at three different angles at 90°, 67.5° 
and 45° as measured with a protractor. The accuracy of angle measurements is shown 
numerically in Table 1. TrackSense provides accuracy of better than 2°. The accuracy 
degrades as the angle gets narrower. As the angle between the walls decrease, the angle 
from each wall to the TrackSense unit increases causing an increase in error similar to that 
seen in Section 4.1.2. The precision of the system remains relatively constant (around 1°) 
despite the angle of the walls. 

Table 1: Accuracy of angle measurements between two walls 

Ground truth Measured 
angle (Mean) 

Difference 
(Error) 

Standard 
Deviation 

90.00° 90.08° 0.08° 1.70 
67.50° 69.09° 1.59° 1.83 
45.00° 43.06° 1.94° 1.25 

4.2.2 Location Within a Room 
By observing a corner, our prototype measures the distance to two walls and can produce 
an (X,Y) location within a room. Using a fixed height, and keeping the TrackSense grid 
projector and camera pointing towards a known corner, measurements were taken from a 



 

total of 25 positions equally spaced on a grid covering an area of approximately 2.0m x 
3.0m. We took 300 samples at each location with standard office lighting conditions. 

Figure 9 shows the raw data results of the two wall position experiment. Throughout 
the experiment, we pointed the apparatus toward the lower left corner of the room (the 
corner at the origin of the coordinate frame). This raw data has an average accuracy of 
only 29.0cm. When we apply the linear correction factor discussed in Section 4.1.1, the 
average accuracy of all 25 data points is increased to 17.3cm. If we look at only the 9 
points closest to the corner (grid size of 1.2m x 1.2m), our corrected accuracy is 9.53cm. 

To calculate the precision, we first computed the variances of the detected X and Y val-
ues. var(X) and var(Y) are the squared mean distances of X and Y from the mean. Because 
the data is in a Cartesian coordinate frame, the Euclidean distance can be applied, and the 
average distance of all samples from their mean is  

std( X ,Y ) var( X ) var(Y )= + . 
Within a working range of 2m x 3m the precision of the system is at most 15.8cm (ap-

proximately 3 cm – 4cm in each direction) for 90% of the readings (see Figure 9). The 
device performs the best when it is close to at least one wall when pointed at a corner. 
The reason for the less accurate results when compared to the single wall experiment is 
that fewer points were being used to define each plane, as the grid pattern is distributed 
across two different walls. An accuracy of 10 to 17cm with 15cm of precision is still 
significantly better than other indoor location systems that do not require the deployment 
of infrastructure. By using multiple TrackSense units, each plane in the room would be 
illuminated by more feature points. This would increase the total accuracy and precision, 
approaching the performance of the single-wall experiments. 

   
Figure 9: Two wall experiment. Left: Each dot represents a single data sample. Dots of the same 
color belong to the same position data set and black crosshairs show mean values. Right: Up front 
view of interpolated standard deviation of the two wall readings. 



 

5 Miniaturization and Addressing Limitations 

In this section, we discuss miniaturizing this system and present two realistic proto-
types: a handheld device and a head-mounted unit. We also discuss the limitations of the 
current prototype and show how we would extend the system to cover an entire room. 
Finally, we consider some limitations that are beyond simple engineering considerations. 
 

   
Figure 10: Headset and handheld with active components on miniaturized TrackSense units. 

5.1 Miniaturization and Improvements 

Our system is composed of relatively simple parts. We chose to use a projector in our 
prototype because it gave us the flexibility to experiment with various patterns quickly. 
Because the projected pattern is static, we can replace the projector with an infrared grid 
laser diode. The infrared diode would eliminate the visible patterns and increase the range 
because it is brighter. We would replace the camera with a smaller, black-and-white cam-
era with an infrared pass filter and could place multiple laser/camera units on the loca-
lized device as a result of the miniaturization (see Figures 1 and 10). Theoretically, a 
single TrackSense unit with a wide enough field of view could always have at least one 
corner in its field of view, permanently maintaining a position and orientation fix. Practi-
cally, we expect several TrackSense units angled in different directions to cooperatively 
identify three planes within their combined views, interpolate the location of the (possibly 
non-observed) corner, and determine their location and orientation regardless of their 
platform's motion. For the handheld unit (see Figure 10), we placed two TrackSense units 
facing forwards and angled 45 degrees away from center. This configuration ensures that 
two walls are detected at any given time for proper localization within the entire room. A 
third camera facing up or down enables full 3D positioning. Another strategy is to slightly 
angle the two front facing units up to capture the wall and ceiling corners, eliminating the 
need for the third. However, this solution would also limit how much the user can tilt the 
handheld forward. 



 

On a head-mounted device (see Figure 10), we can place four units looking at 90 de-
gree intervals. The units could be angled slightly upwards for full 3D positioning or a 
fifth could be added pointing vertically. The advantage of the head mounted unit is that 
more units can be installed facing in opposite directions, which would result in better 
precision in a larger room. As we saw in the results, the farther the device is from a wall, 
the lower the precision and accuracy. Since the head mounted device has a full view in all 
directions, the system can select the closest walls to offer the best results. 

5.2 Limitations 

There are still several limitations of our approach worthy of further examination. The 
current solution only supports one device in a room at a time. This might be acceptable 
for some applications, but not for multiplayer games or collaborative applications. One 
solution is to synchronize the devices and have them alternately flash their patterns. Since 
the devices know their position within the room, the devices can turn off certain parts of 
the grid to avoid interfering with another device. 

An important limitation to our approach is the need for walls in the space. The wall has 
to be free of major obstructions and large windows. In our experience, posters and other 
flat objects do not cause major problems, and our implementation can detect outliers. 
However, many raised objects on the wall cause the system to incorrectly identify the 
plane. The current technique also assumes a flat surface with little to no curvature, limit-
ing the types of rooms that are appropriate. However, our intent with this device is to 
enable applications where a user would already want to interact with multiple large sur-
faces that are relatively plain in the first place [5]. If the intent is to extend our solution to 
more complex spaces we can incorporate stereo vision techniques that work well in clut-
tered environments and use both approaches in a complementary fashion.  

Some dark wall colors cause problems for detecting the grid. Very bright lighting con-
ditions (i.e., near a window during the day) can make the projected lines too faint. How-
ever, most artificial lighting from standard fluorescent and incandescent lights does not 
cause major problems with detection. Another concern is very tall ceilings, in which case 
the units would have to be oriented to detect walls and floor corners. To obtain three di-
mensions, we must select a unit to face downwards. The detector camera resolution also 
limits how far a unit can be from a wall, thus limiting the working range in a room. Our 
experimental prototype was limited to a room approximately 5m x 5m in size. A higher 
resolution camera and the use of a laser grid would improve those limits. 

6   Conclusion 

We presented TrackSense, a localization system that requires no additional infrastructure 
in the environment and provides 3D positioning and orientation data that compares favor-



 

ably against existing solutions. Inspired by robotics localization and camera-projector 
calibration techniques, our solution uses a camera to locate and track a grid pattern pro-
jected onto surfaces in the camera’s field of view to determine its distance and orientation 
to multiple fixed large planes in a space (i.e., walls and ceilings). A system of TrackSense 
units can obtain up to 4 cm accuracy with 3 cm precision in rooms up to 5 square meters, 
as well as 2 degree accuracy and 1 degree precision on orientation. The relatively simple 
hardware used in its implementation makes miniaturization possible. 

TrackSense provides localization within a room, but combining it with a room-level 
localization system, such as WiFi or GSM fingerprinting, can provide localization within 
a global coordinate frame.  In addition, our solution provides a useful complement to 
traditional stereo vision techniques, which do not perform well on plain surfaces. The 
addition of another camera would provide localization within both a cluttered and unclut-
tered environment, thus extending the capabilities of the device further. 
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