
LOGICAL TIME
Friedemann Mattern

Darmstadt University of Technology

The notion of time seems to be elusive in distributed systems, where message delays are usually variable and where
processes often do not have access to a global clock or to perfectly synchronized local clocks (see Clock
Synchronization). On the other hand, time is an important concept in every day life of our “decentralized real world”
and helps to solve problems like getting a consistent population census or determining the potential causality between
an alibi event and a criminal act. Hence, time is indeed useful, even in a distributed setting.

But what, in fact, is time? If one concentrates on the structural aspects, then the prevalent view of time is that of a set of
“instants” with a temporal precedence order satisfying certain obvious conditions such as transitivity, irreflexivity,
linearity, and density. Interestingly, however, in most cases when we make use of time and clocks we do not need all
these properties – for example, digital clocks obviously do not realize the density axiom but are nevertheless useful in
many cases.

The challenge consists in defining an abstract notion of time suitable for distributed systems which, on the one hand, is
easily realizable without using physical clocks but, on the other hand, has enough interesting properties to justify the
name “time”. Ideally, the concept of logical time should work as a partial substitute for real time and be practically
useful in that respect. For example, one would like to be able to assign time values to events such that it is possible to
infer potential causality between these events or to exclude causal influence in the sense that a “later” event cannot
affect an “earlier” event.

Events, Causality, and Space-Time Diagrams

To model a distributed system, one typically considers processes which communicate by messages and which execute
sequences of events (i.e., elementary or atomic actions). These events occur at specific instants in time. They are
usually classified into send events, receive events, and internal events. An execution of a distributed system on such an
abstract level can be depicted with the help of a space-time diagram (see the first figure) where time moves from left to
right. Messages are drawn as arrows, and events are depicted by dots.

Events are related to each other: Events occurring at a particular process are linearly ordered by their local sequence of
occurrence, and each receive event has a corresponding send event that happens earlier. Formally, one defines the
causality relation ‘<’ as the smallest transitive relation on the set of events such that ‘<’ holds for any two events e, e’
if

1. e and e’ happen at the same process and e is the immediate predecessor of e’ or

2. e’ is the receipt of a message which was sent by event e.

It is reasonable to assume that in a space-time diagram message arrows do only move forward in time; therefore the
causality relation ‘<‘ contains no cycles (i.e., it is a partial order). This relation is the heart of any sensible notion of
logical time and determines its primary characteristic, namely that the future cannot influence the past. It was called
“happened before” by Lamport [3], because e < e’ signifies that e happens before e’ – in the sense that e is drawn to the
left of e’, (i.e., that e happens earlier than e’ in global time), but also in the sense that e causally precedes e’. The
causality relation can be depicted on space-time diagrams by paths, which consist of message arrows and fragments of
process lines traversed from left to right. Intuitively, this becomes evident if one reads e < e’ as “e may influence e’ ”.
If two events e, e’ are not causally related (i.e., if they are causally independent) we write e || e’.

It is possible to view a space-time diagram as a timing diagram of an actual computation where the horizontal direction
represents real time. Then the events occur at some specific instant of time as observed by an idealized external
observer. It seems to be clear, however, that with respect to the causality relation the exact global time at which an
event happens is of no concern, provided that the local sequence of events is not changed and message arrows do
always point from left to right. Obviously, a space-time diagram can be transformed into another “equivalent” diagram
(showing the same causality relation) by stretching and compressing the horizontal process lines as if they consist of
idealized rubber bands. In that way, a set of mutually causally independent events may be aligned vertically as if they
happen simultaneously – an important property for algorithms that compute consistent cuts and global states (see
Distributed Snapshots).

Scalar Clocks

In an execution of a distributed system, where all actions are modeled by events, nothing happens between two

successive events. Hence time needs only be advanced with the occurrence of an event and is therefore discrete. Since
events are supposed to be durationless and occur at specific instants in time, a function C: E → T must be found which
assigns a timestamp C(e) of a suitable “time domain” T to each event e of the event set E. The comparison of
timestamps of different events should allow to draw certain conclusions about the relation of the events. It seems to be
plausible that at least the notions “earlier” or “later” should exist within any sensible notion of time. Hence logical time
should be a (possibly partial) order (T,<). From an abstract point of view, the function C can be called logical clock. A
reasonable requirement on C is that it conforms to the causality relation:

∀ e, e’ ∈ E: e < e’ → C(e) < C(e’).

This important property is often called the clock condition. Stated verbally, it reads “an event e should get a smaller
timestamp than an event e’ if e can causally affect e’ ”. As a consequence of the clock condition the following
properties hold:

1. For each process, time is monotonically increasing.

2. The logical time of a send event is always earlier than the logical time of the corresponding receive event.

In his seminal article “Time, Clocks, and the Ordering of Events in a Distributed System” [3], Lamport presented an
implementation scheme for logical time based on an integer domain T for the timestamp values. It is realized by a
system of counters Ci (one for each process) and a simple message handling protocol:

1. When executing an internal event or a send event at process Pi, clock Ci “ticks”: Ci := Ci + d.

2. Each message contains a timestamp that equals the time of the send event.

3. When executing a receive event at Pi where a message with timestamp t is received, the clock is advanced: Ci :=
max(Ci, t) + d.

Typically, d = 1, but any value d > 0 is acceptable. We define the timestamp C(e) of an event to be the value of the local
clock just after it is being updated when executing the event. Observe that (if d = 1) this value is one larger than the
length of the longest causality path that leads to the event.

As it stands, the scheme allows different events (in different processes) to have the same timestamp. For some
applications (e.g., when the earliest request event should be granted access to an exclusive resource), timestamps must
be unique. This is easily realized by using an ordering on process identifiers as a tie-breaking mechanism for such
(causally independent) events.

Scalar clocks have some interesting applications. Unfortunately, however, they lose some structure by mapping the
partially ordered events onto linearly ordered integers. In fact, events that are causally independent get assigned
timestamp values as if they happen in a certain order. Hence, scalar clocks lack a desirable property of time: by
checking the timestamps of events, it is usually not possible to assert that some event could not affect some other event.
The reason for this defect is that C is an order-homomorphism which preserves ‘<’ but which does not preserve
negations (e.g., ‘||’). To repair this, the time domain T must represent the event structure in an isomorphic way, which

1 2 3 6

send

receive

internal

time

31 4 5

causality path
5 scalar
 timestamp

1

2

21

P3

P2

P1

means that the converse implication of the clock condition (∀ e, e’ ∈ E: C(e) < C(e’) → e < e’) should also hold. This
is in fact possible with a concept called “vector time”.

Vector Clocks

To motivate vector time, assume that, similar to scalar clocks, each process Pi has a simple logical clock implemented
by a counter, which is incremented by 1 each time an event happens. An idealized external observer who has
immediate access to all local clocks knows at any moment the local times of all processes. An appropriate structure to
store this global time knowledge is a vector with one component for each process. The example depicted in the second
figure illustrates the idea.

Because of variable message propagation delays, the instantaneous knowledge of the idealized observer cannot be
realized in practice. Our more humble aim therefore consists of designing a mechanism by which each process can
compute – without extra messages – an optimal approximation of this notion of global time. For this purpose each
process should be informed at the earliest possible moment about all known events which did already happen.

To achieve this, we equip each process Pi with a clock Ci that consists of a vector of length n (where n is the total
number of processes). Such a vector clock Ci is initialized with the null vector; it “ticks” immediately before the
execution of an event by incrementing the value of its own component:

Ci[i] := Ci[i] + 1.

Each message is timestamped with the current value of the sender’s vector clock. When receiving a timestamped
message, a process combines its own time knowledge Ci with the timestamp t it receives by performing

Ci := sup(Ci,t),

where sup denotes the componentwise maximum operation. In this way, each process maintains knowledge about the
number of events executed by all other processes of which it has heard. The timestamp C(e) of an event e occurring at
process Pi is the value of clock Ci at the moment of the execution of e. (For receive events this is the value just after
updating the clock.) The propagation of time knowledge and the updating of the vector clocks is shown in the figure.

Obviously, the events of process Pi are sequentially numbered by the ith component of clock Ci. Or, to put it differently:
before event e, C(e)[i]-1 other events did already happen on the same process. In fact, the vector timestamp C(e) of an
event e contains in a compact way the complete knowledge about all those events from which e is (potentially) causally
dependent. For example, C(e)[k]=j signifies that event e depends on the first, the second,... the jth event of process Pk,
but that it is not dependent of any later event of process Pk. Formally, the ith component of C(e) can therefore be defined
as follows:

C(e)[i] = |{e’ | e’ is an event of process Pi ∧ e’ ≤ e}|.

(As usual, e ≤ e’ stands for e < e’ or e = e’.) One may easily check that this definition is realized by the previously
mentioned rules for the handling of vector clocks and timestamps. In order to be able to compare time vectors, one
defines the following relations for two vectors u, v:

u ≤ v :↔ ∀i: u[i] ≤ v[i],

u < v :↔ u ≤ v ∧ u ≠ v,

u || v :↔ ¬(u<v) ∧ ¬(v<u).

Observe that ‘≤’ (and hence also ‘<’) is a partial order. Relation ‘||’, which is reflexive and symmetric (but non-
transitive!), can be viewed as a generalization of the simultaneity of real time. However, whereas in real time
simultaneity means truly identical instants in time, simultaneity in vector time has a larger extension.

The main property of vector clocks is that they induce an isomorphism of causal structure and temporal structure:

∀e, e’ ∈ E: e < e’ ↔ C(e) < C(e’).

This stronger form of the clock condition has an easy interpretation on space-time diagrams: An event e’ has a larger
timestamp than event e if and only if there is a path in the form of a causal chain from e to e’. Obviously, the value of a
vector component can only increase along such a path. If, conversely, an event e’ has a larger timestamp than another
event e, then there must exist a path from e to e’ along which the “time knowledge” C(e) is propagated. The reasoning
with causal paths also reveals that the clock condition can be simplified if it is known that event e occurred at some

process Pi and e ≠ e’. Then only the vector components belonging to that process have to be considered: e < e’ ↔
C(e)[i] ≤ C(e’)[i].

The stronger form of the clock condition does immediately indicate how to test two events for causal independence:

∀e, e’ ∈ E: e || e’ ↔ C(e) || C(e’).

Informally, this asserts that exactly those events are mutually independent which happen simultaneously.

Applications of Logical Time

Logical time has many applications in the design of distributed algorithms. For example, finding the earliest event is
useful for resolving conflicts (e.g., for guaranteeing mutual exclusion or for resolving deadlocks), and identifying a set
of simultaneous events is helpful for determining consistent recovery lines.

Clearly, the causality relation is a powerful concept for analyzing and reasoning about distributed computations in
general [4]. Closely related to causality is the notion of consistency, which is of utmost importance for the correct
evaluation of global predicates (i.e., properties of the global state). Since vector clocks respect the stronger form of the
clock condition and therefore fully characterize causality, they find many applications when causality or consistency
must be handled in an operational way. For example, consistent snapshots are essentially subsets of events that are left-
closed with respect to the causality relation and can therefore be determined using vector clocks.

Sometimes, it is necessary to enforce causal order among certain events. For example, an observer of a distributed
system usually wants to receive notification messages from the different processes in “correct” event order so that a
consistent global view may be obtained. If notification messages carry timestamps, an observer knows whether there
are other notifications in transit referring to events that “happened before” – acceptance of messages that arrive “too
early” can then be postponed.

Another application of logical time is debugging of distributed systems (see Distributed Debugging). With vector time
it is possible to show that some event cannot be the cause for another event, thus helping to locate an error.
Furthermore, timestamped trace data can be used to reduce the information necessary to replay a computation and to

detect race conditions: a potential race condition exists if there is no causal relationship between two events. Since
causally independent events may be executed concurrently, logical time is also useful to determine the degree of
parallelism of a computation.

Besides scalar clocks and vector clocks, other logical clock systems were proposed in the literature. For example, to
discard obsolete information in replicated databases, matrix clocks were introduced. Basically, they consist of n
“parallel” vector clocks of length n: Clock M[j,k] of a process represents what the process currently knows about what
process Pj knows about the number of events that process Pk already executed. Hence, “higher dimensional clocks”
give processes additional (i.e., indirect) knowledge.

Scalar clocks are easily implementable. Vector clocks (and matrix clocks), on the other hand, are impractical or at least
expensive – in particular for systems that consist of a large number of processes. Charron-Bost demonstrated [1] that in

2
2
1
1

2
1
2
1

2
1
3
1

Ideal
Observer

0
1
0
0

0
2
0
0

2
3
3
1

P3

P2

P4

P1

0
0
0
2

0
0
0
1

2
1
0
0

1
1
0
0

0
0
1
1

0
1
0
0

1
2
0
1

2
2
2
1

2
2
2
2

2
2
3
2

2
3
3
2

1
1
0
1

0
1
0
1

2
2
0
1

general the size of timestamp vectors cannot be reduced if the temporal structure should isomorphically represent the
causal structure. There are several optimizations, however, which may substantially reduce the information in most
practical situations [4]. For example, it is possible to piggyback on a message only the non-zero increments of those
vector components that changed since the last communication with the same receiver and thus reduce the
communication overhead.

More information on logical time may be found in [2]-[5], reference [5] is a collection of papers that also contains an
annotated bibliography.

References

[1] B. Charron-Bost, Concerning the Size of Logical Clocks in Distributed Systems, Information Processing Letters 39,
11-16, 1991.

[2] C. Fidge, Logical Time in Distributed Systems, Computer 24, 28-33, 1991.

[3] L. Lamport, Time, Clocks, and the Ordering of Events in a Distributed System, Communications of the ACM 21
(7), 558-565, 1978.

[4] R. Schwarz and F. Mattern, Detecting Causal Relationships in Distributed Computations – in Search of the Holy
Grail, Distributed Computing 7, 149-174, 1994.

[5] Z. Yang and T. A. Marsland (eds.), Global States and Time in Distributed Systems, IEEE Computer Society Press,
1994.

Cross Reference:

Causality see Logical Time.

Clocks see Logical Time.

Consistency see Logical Time.

Events see Logical Time.

Global Predicates see Logical Time.

Happened Before see Logical Time.

Knowledge Propagation see Logical Time.

Lamport Clocks see Logical Time.

Logical Clocks see Logical Time.

Order see Logical Time.

Partial Order see Logical Time.

Snapshot see Logical Time.

Space-Time Diagram see Logical Time.

Time see Logical Time.

Timestamps see Logical Time.

Vector Clocks see Logical Time.

Vector Time see Logical Time.

