
FragDB – Secure Localized Storage Based on
Super-Distributed RFID-Tag Infrastructures

Marc Langheinrich
Institute for Pervasive Computing, ETH Zurich

8092 Zurich, Switzerland
langhein@inf.ethz.ch

Abstract

Smart environments and wearables will make the
storage and subsequent sharing of digitized multimedia
diaries and meeting protocols – whom we meet, or what
we say or do – cheap and easy. However, controlling
access to this data will become cumbersome if tradi-
tional forms of access control are to be used: Overly re-
strictive rules might deny the potential of data sharing,
while a lack of control could easily lead to Orwellian
surveillance scenarios. This paper presents FragDB, a
storage concept based on localized access control, where
data storage and retrieval are bound to a specific place,
rather than a the knowledge of a particular password
or certificate. FragDB uses tiny RFID tags embedded
in floors, walls or desks, to compute a local key that
is used to encrypt and decrypt data in a global storage
system. We describe the setup of an initial prototype
and analyze its complexity.

1. Introduction

With storage media continuously dropping in price,
the vision of storing all events of our lives, in the man-
ner of a 24/7 multimedia diary, seems soon to become
feasible. So-called “capture and access” projects such
as Classroom2000/eClass [1] or Teamspace [4] have em-
ployed audio and video recording to make lectures and
meetings accessible to attendees and external guests
for later perusal. Other “active spaces” research, such
as Microsoft’s Easy Living [3], Stanford’s interactive
workspaces [6] or Gaia at the University of Illinois
at Urbana Champaign [8], envision the comprehensive
digitization of our lives in order to provide novel ser-
vices and smart reactive environments. All of these
projects have recognized that controlling access to the
stored data requires novel access control schemes, as

traditional forms of role-based access control (RBAC)
fall short of the required flexibility.

A number of researchers have begun to explore the
use of location as an access control parameter, thus
allowing users to regulate access to particular data
not only on who wants to access it, but from where
[5, 7, 9, 10]. However, common to all approaches is
the need for explicit access control, i.e., data owners
will need to formulate and adjust security policies in
order to properly regulate access to the stored data.
While this might be feasible in an office setting, e.g.,
where employees are used (or required) to protect sen-
sitive documents, many novel types of data acquired
by active spaces might be difficult to properly assign
an access category. In many situations, implicit access
control might be sufficient, which uses situated privacy
controls to limit data access. Situated access is not reg-
ulated explicitly through security parameters of access
policies, but implicitly through time and space. With
situated access control, only those close enough in time
and space will be able to “witness”, i.e., retrieve, stored
data, while those far away, both in time and space, will
not.

While this “free for all, if near enough” approach
might sound counterintuitive for traditional data sets,
such as contact information, health or financial data,
it might be sufficient for semi-public data that does
not warrant explicit protection, but which nevertheless
should be prevented from being globally and eternally
available. An example would be the above-mentioned
meeting rooms, where the individual participants could
store logs of their own wearable sensors directly in the
meeting room, allowing participants who come late, or
maybe even next year’s students, to easily find it there.
Smart vehicles could store information on road condi-
tions or encountered hazards, say, at mile 27, on tags
they remembered a few miles ahead, e.g., at mile 25
(and maybe later again at mile 29). This would allow
the following traffic to be informed in time, without

giving an outside observer any information on the ac-
tual locations of individual cars or events. FragDB at-
tempts to demonstrate the technical feasibility of such
an implicit privacy control system.

2. Basic Principles

The basic idea of FragDB is analogous to how peo-
ple managed their privacy in the past: While certainly
under close observation by their neighbors, detailed in-
formation about individuals was not available in far
away places. In order to find out about someone’s past,
one had to travel to a person’s home town and talk to
friends and neighbors. Thus, privacy was an inherent
aspect of the locality of a person. Instead of having
to manage one’s privacy, which always entails the pos-
sibility of mismanaging it, the limited communication
and storage capabilities of the past implicitly hampered
the unwanted disclosure of personal facts across spatial
and temporal boundaries.

FragDB aims at recreating some part of this inherent
privacy of a place, by constructing a system that facil-
itates a localized storage and retrieval concept. Data
is seemingly deposited at a particular location and can
only be retrieved by visiting this particular place again.
Since FragDB uses a remotely accessible storage system
for actual data storage (e.g., a file server), all stored
data is encrypted with the particular fingerprint of
the original storage location. Only if this fingerprint
is known, or by physically traveling again to the orig-
inal storage location to (re-)compute this fingerprint,
can data in the storage system be retrieved.

The idea of using the “fingerprint” of a particular
location as an access key to a storage repository creates
two immediate challenges:

1. Fluid Boundaries: One cannot expect to find one-
self directly at the same spot for data retrieval as
used for data storage. As such, our storage system
must be able to tolerate a certain fluidity in po-
sitioning, while still recreating the correct access
keys (i.e., fingerprint).

2. Time Variance: In order to prevent that a one-
time readout of a place’s fingerprint leads to a
perpetual access to all data being stored at this
place, the access keys of a place have to periodi-
cally change.

Challenge two immediately leads to another compli-
cation: once an access key of a place changes – this
might happen as fast as every day or every hour – ac-
cess to this information might be lost forever, unless
we have saved the particular key used during storage.

Smart Glasses
Provide 24/7 multimedia diary stream
Smart Glasses
Provide 24/7 multimedia diary stream

Location-Aware Shoe
Provides low-cost SDTI positioning
Location-Aware Shoe
Provides low-cost SDRI positioning

mu-Chips
SDTI infrastructure (carpet-integrated)
mu-Chips
SDRI infrastructure (carpet-integrated)

Integrated antenna detects tags

Personal communicator
stores shared (public) data
at location-based storage

Location-Based
Storage System

Fragmented Database

D
at

as
tr

ea
m

+
Lo

c-
ID

s

O
rig

in
al

 „R
FI

D
-M

an
“A

rt
w

or
k

©
20

06
 R

SA
 La

bo
ra

to
rie

s,
Co

ur
te

sy
of

 A
ri

Ju
el

s

Figure 1. Overview of General Operation.

However, the idea of conveniently sharing semi-public
information with people in the vicinity, both time- and
space-wise, is the main reason for such an access control
scheme – if all we wanted to do is protect personal infor-
mation, much more effective means would be possible,
e.g., local storage in a wearable system, or a biometric
encryption key. Our third challenge is thus:

3. Time Continuity: Instead of simply exchanging
an old fingerprint for a new one, a location needs
to keep track of a number of old prints (say, the
last five or the last fifty, depending on the reso-
lution), so as to still support the retrieval of data
stored at this place in the past. However, old keys
should eventually expire, recreating some sort of
“forgetfulness” principle.

Note that this only apparently contradicts our time
variance principle: While our second challenge ad-
dresses the storage of new information, the time con-
tinuity principles concerns the access to old informa-
tion. New data should continuously be fingerprinted
differently, even at the same place, but old fingerprints
should continue to “lie around” for a while.

Last but not least, by having a remotely accessi-
ble storage system where fingerprinted data is saved,
we also must make sure that data access is impossi-
ble without knowing the proper key (fingerprint) of
its storage location. Otherwise, a simple database
scan could reveal any location-bound data stored in it.
Thus, our fourth requirement is that of secure storage:

4. Secure Storage: Irrespective of actual storage lo-
cation in cyberspace – be it a server in Boston or
Cape Town, or multiple servers distributed around
the world – the stored data must be properly en-
crypted, in order to render database attacks infea-
sible.

2

Figure 2. Prototype Interface.

In our actual implementation of FragDB, we use the
IDs of a large numbers of RFID-tags, embedded in the
environment, to serve as the key to a virtual storage
location. As RFID-tags can only be read locally with
a reader device, we can ensure that users must be at or
near the place where data was stored, in order to find
the data’s access parameters, which then allow data re-
trieval from anywhere. The idea of incorporating large
populations of miniature RFID tags into the environ-
ment was first proposed by Bohn and Mattern [2], who
envisioned passive RFID tags deployed in vast quanti-
ties and in a highly redundant fashion over large areas
or object surfaces – so-called Super Distributed RFID-
Tag Infrastructures (SDRIs) – in order to provide novel
services such as positioning or collaboration.

Figure 1 shows the overall operation principle of
FragDB. In the example, a user fingerprints a particu-
lar SDRI environment – as detected by a shoe antenna
– to store publicly available media information from
his smart glasses at a location-bound storage cell. The
data is fragmented into pieces and can only be related
to each other by supplying a considerable subset of
IDs (i.e., key fragments) from the SDRI-tags present
at that location. The next section describes our proto-
type implementation in detail.

3. Prototype System

Our FragDB prototype consists of a simulator, allow-
ing us to virtually place RFID-tags on virtual surfaces
and subsequently simulating the storage and retrieval
of data through a set of read-in tag IDs, as well as an
actual RFID-reader interface that supports the entire
process with real RFID-tags, albeit at a much smaller
scale (i.e., typically dozens, instead of thousands of
tags). Also, data storage is handled by a generic stor-

Figure 3. Key Reassembly/Data Access.

age system interface that currently stores information
in main memory, but which could just as well use a file
server or a distributed P2P-storage system.

Figure 2 shows the user interface of the prototype
after storing a file in the virtural environment. Cen-
tered at the bottom, the virtual surface shows a set of
tags that have been read in (shaded). Tag selection
can be done using a paintbrush-like cursor that allows
simulating the process of reading tags on the surface.
The controller window at the top right can then be
used to store, e.g., an audio file at the virtual location
of the read tags, using a particular storage algorithm
(“FEC Fragmentation 2:1” in this example, see sec-
tion 4.1). The memory window shown at the left side
gives a view of the global storage system, indicating
the storage cells where data has been placed. In the
example, the audio file is divided into a set of individ-
ual fragments and stored all across the storage system,
in order to make reassembly by a simple storage sys-
tem scan infeasible. A separate batch controller (not
shown) allows automating these steps multiple times,
i.e., tag selection, file selection, and storage of the file
at the selected tag locations, in order to achieve a more
realistic system usage.

The set of read tags (shaded in the virtual surface
window in figure 2) represents the key for both locating
and decrypting the stored data in the storage system
– saving this “key” allows the data owner continuous
access to the stored data. Users without this key must
physically travel to the initial location where the stor-
age was performed (i.e., where the RFID-tags repre-
senting the key are located) and reassemble this key.
The interface for key reassembly, and thus data access,
is shown in figure 3. As during file storage, the user
first uses a paintbrush-like cursor to select a set of tags
from the virtual surface that should be read in. During
tag reading, the system continuously assembles the tag
IDs into potential access keys and shows a list of found
files under the retrieval-tab of the controller window.
In the example, the keys for the two topmost files have
been completely reassembled, while keys for six other
files have been found but not completely reassembled,

3

Virtual Surface Controller Storage System

Select Tags

ID-Set

Retrieval

Storage
IDs, Frags

Frags

IDs

Figure 4. FragDB Controller.

as indicated by the status column. Section 4 below
describes the mechanics of this process.

Both storage and retrieval (but not the batch opera-
tions) also work with actual RFID hardware. We have
connected a Hitachi µ-chip reader to our prototype and
affixed about forty µ-chips to a number of cardboards,
representing a floor or desk space. µ-chips feature a size
of 0.16mm2 and a stick antenna of about 10cm. They
contain a factory-written, read-only 104 bit serial num-
ber, which can be read out from up to 5-10cm distance.
µ-chips and -readers do not use an anti-collision proto-
col, so having several µ-chips in range will most likely
result in failed readouts. The FragDB prototype maps
physical RFID-tags onto a simulated one, thus allow-
ing our µ-chips to support the same features as our
simulated ones, i.e., time- or usage-based ID changes,
as well as storage of prior IDs.

4. Architecture

Figure 4 shows the general architectural division. A
central controller interfaces the virtual surface (or, al-
ternatively, a real hardware reader) to receive a set
of tags read at a particular location. It then uses
these tag IDs to either store data in the storage sys-
tem, or attempt to retrieve data stored “at” these tag
IDs from the storage system. The architecture sup-
ports the four distinct features described above: fluid
boundaries, time variance, time continuity, and secure
storage.

4.1. Fluid Boundaries

A straightforward way of binding a file to a spe-
cific set of tags is using the tags’ IDs as pointers to
individual memory locations, and storing a fragment
of the file at each memory cell, as illustrated in figure
5(a). In order to tolerate variances in the tag set, a
fragmentation algorithm is used that encodes the de-
sired level of redundancy into each fragment, e.g., us-
ing a forward error correction code (FEC). The FragDB
prototype supports three different kinds of fragmenta-
tion algorithms: A simple split algorithm simply cuts
a file into as many pieces as memory cells available,

ID-Space Storage-Space

(a) n:n-storage

ID-Space Storage-Space

(b) n:1-storage

Figure 5. ID-Storage Mapping Options.

with no redundancy. This is useful for streaming data,
such as audio or video, where a certain loss of frag-
ments can be tolerated. The redundant split algorithm
saves each fragment twice, i.e., fragments the file in
only half as many pieces as possible. While it is able
to tolerate slightly more missing fragments, it is still
most useful for streaming media files. The FEC 2:1
algorithm finally uses Reed-Solomon forward error cor-
recting codes to encode redundancy information evenly
across all fragments, allowing the system to reassemble
the entire file with any half of the fragments.

Alternatively, one could assemble the individual IDs
into a single key that would point to a single stor-
age location for the entire file, as illustrated in fig-
ure 5(b). Again, some means to tolerate incomplete
tag sets would need to be incorporated, e.g., by using
threshold cryptography (e.g., [11]) to allow a subset of
the original tags to resolve into the used address (i.e.,
the “secret”). While this should work well for a single
file, the presence of multiple files would quickly break
any used threshold cryptography algorithm, as these
typically cannot differentiate between shares from mul-
tiple secrets.

4.2. Time Variance

In order to prevent that a one-time visit to a place
yields eternal access to the data stored at this place,
access IDs will need to periodically change. Future
RFID tags might employ miniature timer components,
which could be powered by a capacitive element that
would be charged when the tag is within a reader’s
field, and subsequently be able to power the on-chip
clock for a certain period of time. Alternatively, tags
could be programmed to change their ID upon each
readout with a certain probability, yielding a similar
behavior as a timer-based solution. The FragDB proto-
type supports both approaches in its simulator, while
providing a probabilistic ID-translation table for the
real hardware reader in order to simulate the second
method also for actual read-only RFID tags.

4

RFID Tags
Storage System

Current ID
8AF62

F2539

B35F*

04DA*

74A**

9DB**

89***

C1***

54017

8DC12

0439*

B3EC*

C34**

324**

AC***

9C***

03BCA

948AA

8CC3*

1231*

BC3**

987**

AA***

84***

7843A

43B21

D132*

E321*

DE2**

9E4**

12***

4E***

File67

File315

File942, File4

File12, File44

-

File91

File14, File15, …

File4856

-

File315, File4

File315

File4 File4, File42, …File952

File44, File12

File91

-

File14, File74

File44265

File942

File44

File91, File12

File14, File74

File4856

-

File315, File942

File67

File44

File91, File12

File74

File14

File32

File 91

File 4

Figure 6. Virtual Layered Storage.

4.3. Time Continuity

While time variance ensures that a once acquired fin-
gerprint will not guarantee perpetual access to stored
data, it also cuts off access to previously stored data
for “legitimate” users, i.e., those who actually visit the
prior storage location. In order to still allow local ac-
cess to old data, tag IDs are not simply exchanged with
a new one upon an ID change, but queued. Thus, even
if a new ID is in place (which will subsequently be used
to store new data to support our time variance prin-
ciple), old IDs will still be available in a tag’s “lower
levels,” providing time continuity for readout.

As old IDs must be stored directly on the RFID,
they will need to expire eventually, mimicking the real-
world “expiration” of memories. We implemented a
gradual expiration mechanism by shortening old IDs in
the queue bit by bit as they get older. Thus, an ID at
level S has 2S−1 bits missing, yielding 2S − 1 possible
IDs that a reader needs to explore in order to find the
correct ID that was used S timesteps before. By ad-
justing the “shrinkage factor,” i.e., the amount of bit
shortening per level, and the frequency of ID changes,
e.g., each 100 readouts, the difficulty of retrieving old
information at a place can be regulated, thus providing
both time continuity and, eventually, forgetfulness.

Figure 6 gives a virtual view of a particular location,
comprised of four RFID-tags shown on top. Below,
each tag’s storage cells are given, together with the
respective contents of each cell. The IDs are stored
in the ID-queue of each tag, gradually shortening the
IDs as they grow older, as indicated by the starred-out
numbers. To read a file, a FragDB client will need to
search through such old memory cells, trying a large
number of potential cell locations until a complete set
of file fragments can be found.

4.4. Secure Storage

As pointed out above, FragDB does not actually
store data in a particular real-world location, it only

Encryption Key

Hash

Tag ID

Hash

Storage Address

Figure 7. Storage Keys Derivation.

requires knowledge about a certain key that is made
up by this location to retrieve the information that was
stored there (using this key). The actual file data can
reside in any type of storage system – either a remotely
accessible file server or even a global peer-to-peer stor-
age repository. Each tag ID that is used during file
storage provides a single storage address in this space,
allowing our system to store one fragment of the file
there, as shown in figure 5(a) previously. However,
in order to facilitate file reassembly later, we need to
store metadata in each such fragment, e.g., the creator
of the file, the date it was stored, or the filename, but
most importantly the order of the fragments and infor-
mation on any employed error correction mechanism.
Storing such information in plain text could make it
trivial to access such data without the need to read
out any tag IDs, as the storage system could be sys-
tematically scanned for matching fragments.

A straightforward solution is thus the encryption of
each fragment. As we do not want to require any addi-
tional passwords or keys in the system, we simply use
the tag ID (more specifically: the hashed tag ID) as an
encryption key for each storage cell payload (i.e., the
file fragment including its metadata). However, as we
also used the tag ID to determine the storage cell where
we store each fragment, we would allow an attacker to
compute this encryption key trivially from the storage
cell ID. Thus, we cannot use the tag ID directly, but
instead hash the hashed ID again in order to derive the
storage address for a fragment (see figure 7).

Figure 8 shows the contents of a single storage cell,
corresponding to an RFID-tag with the current address
“ID”. Finding this fragment in memory does not allow
an attacker to decrypt it, as this requires finding the in-
verse of a hash operation. If the ID is known, however,
computing the memory cell location and its encryp-
tion key becomes trivial. Obviously, an attacker could
simply guess an ID and retrieve the data found at this
particular storage cell. By using sufficiently large IDs –
104 bits in the case of the µ-chips – such an exhaustive
search of all 2104 memory cells is rendered impractical.

Note that each storage cell can contain multiple file
fragments – these all share the same key and can be dif-
ferentiated by their (decrypted) metadata. A FragDB
client reading, say, ten different RFID-tags, would im-
mediately be able to access ten different storage loca-
tions containing zero, one, or more fragments each. By

5

hash(hash(ID)) Enc(hash(ID), Fragment Payload)
Address Contents

Figure 8. Storage Cell Contents.

using the corresponding key for each cell, these frag-
ments can be decrypted and sorted into different files
(as seen in figure 3 above). The next section analyzes
the complexity of this process.

5. Complexity Analysis

In order to better assess the feasibility of our pro-
posed architecture, we have analyzed the complexity of
the envisioned time variance and continuity principles.
These figures should give a better idea on how hard it
will be to retrieve old data through expired keys. The
following calculations make a number of assumptions:

• The time to read out a tag is constant for all tags

• When shortening a (past) ID, all possible full IDs
are equally probable

• The time to read out a fragment is constant for all
storage addresses

• File retrieval operates on the correct tag set, i.e.,
no tags are missing, but the stored file may require
the use of old IDs

As the actual reading of tag IDs can be assumed to
be linear, i.e., O(n), any complexity stems from the po-
tentially large number of storage addresses that need
to be checked if the file contents cannot be reassembled
from the set of initial (i.e., current) IDs. In the best
case, each tag ID leads directly to the corresponding
data fragment, resulting in a total complexity of O(2n).
However, the fact that tags periodically change their
ID (either time-based or probabilistic after a number
of readouts), and that these past IDs are potentially
shortened over time (ID-Fading), typically results in
a much larger complexity. In the following, we com-
pute the worst case complexity for both time-based and
usage-based ID-updates.

5.1. Time-Based ID-Updates

If tags change their ID in a time-based fashion, one
would simply take one arbitrary tag from the tag-pool,
locate the desired fragment in its list of past IDs, and
once this is found, query the same ID-position in all
other tags. Assuming that the initial tag IDs for stor-
age were read together (i.e., in one sweep of a reader),

Figure 9. Distribution Pr of ID-Changes.

and that the period for switching IDs is long compared
to the time it takes to read a tag, all other file frag-
ments should be stored either at this initial ID-level, or
in a neighboring level. In the worst case, the total num-
ber of reads R required to find all n fragments where
the first fragment is located on the s-th level would be
O(s + 2n), as indicated by equation 1:

R ≤ s + 3 + 2(n− 2) ≈ O(s + 2n) (1)

If ID-fading is in effect, i.e., if older IDs are gradually
shortened, e.g., one bit per level, the reading on lower
levels becomes significantly more complex. In order
to find the first file fragment at level s, a user would
need to try 1 + 21 + 22 + 23 + . . . + 2s−1 = 2s − 1
different possible IDs in the worst case. Afterwards,
finding the second fragment would also require costly
ID expansion: in the worst case, first 2s−2 for the layer
above s, then 2s for the layer below (cf. figure 6). Only
then would the two possible layers be identified and the
remaining fragments could again be found in 2(n − 2)
steps. The overall complexity thus reaches O(2s+1 +
2n), as indicated by equation 2.

R ≤ (2s−1)+(1+2s−2 +2s)+2(n−2) ≈ O(2s+1 +2n)
(2)

5.2. Usage-Based ID-Updates

With usage-based ID-updates, tags IDs are updated
with a small probability p upon every read (cf. time
variance in section 4). This means that often-used tags
will experience a large number of ID changes, while
seldom readout tags will only have few IDs changed
in the same period of time. This makes our above
computations more complex, as we cannot assume that

6

Figure 10. Payoff from Guessing.

all of our fragments are stored within a few consecutive
layers. In theory, we might need to try all possible
layers, with s being the “deepest” layer, thus reaching
a worst case complexity of O(sn) with constant IDs,
and O(ns) with ID-fading:

R ≤ (2s − 1)n ≈ O(ns) (3)

We can significantly lower this number if we can
come up with reasonable guesses as to the correct level
s a fragment is to be found. Knowing the probability p
of an ID-change, we can compute the probability that a
particular tag changed its ID i times, given a number
of r readouts. This can be determined by using the
binomial distribution:

Pr(i; p, r) =
(

r

i

)
pi(1− p)r−i (4)

Plotting the above equation with a value of p=1%
for 50, 100, and 500 reads, yields figure 9. As the num-
ber of readouts increases, the probability for the most
likely number of ID changes diminishes, resulting in a
flatter curve that makes it more difficult to correctly
“guess” the right number of changes. Being able to
estimate the number of ID-changes helps us to reduce
the number of past tag IDs that we need to try out
before finding a matching fragment for the file we are
looking for. Figure 10 shows the expected payoff of this
approach, using p=1% and no ID-fading.

The resulting read-access numbers for a 100-tags-
sized file are plotted without and with ID-fading in Fig-
ure 11(a) and Figure 11(b), respectively. Note that Fig-
ure 11(b) has a y-scale of 107, so the two plots should
not be visually compared. Plots are given for the c =
30%, 50%, and 80% quantile, indicating the number
of reads required if only a subset of the fragments is
needed for reassembly (e.g., the employed FEC 2:1

(a) No Fading (b) ID Fading

Figure 11. Max. Reads Req. for 100 Tags.

fragmentation algorithm only requires 50% of all frag-
ments). The quantiles are computed based on equation
5 below, the estimated access numbers follow equations
6 and 7, without and with ID-fading, respectively. No-
tice how usage-based ID changes and fading make re-
trieving old data almost impossible, requiring millions
of readouts to assemble a 100-tags file.

c-quant =

{
x ∈ N |

x∑
i=0

Pr ≥ c ∧
r∑

i=x

Pr ≥ r − c

}
(5)

Enofade =
c∑

i=0

nPr(i; p, r)A(i) withA(i) = i + 1 (6)

Efad =
c∑

i=0

nPr(i; p, r)A(i) withA(i) = 2i−1 +
1
2

(7)

5.3. Tag Selection

The above computations assume that the set of tags
for storage and later retrieval is identical. However, if
the reader is not directly positioned in the right spot
during retrieval, it will not only be necessary to find
the right level of where to search for the fragments,
but also the right place (i.e., the right subset of tags).
Three possible cases of suboptimal tag selection during
readout are possible:

1. The found tag-set partially overlaps the original
set of tags for storage

2. The found tag-set is (only) a subset of the original
set of tags

3. The found tag-set does not contain any tag used
originally for storage

7

Obviously, the system cannot control where the user
points the tag reader. However, it can visually (and
potentially using audio feedback) inform the user of the
progress of file reassembly, thus providing guidance to
the right direction in which to continue searching (cf.
figure 3 on page 3 above).

More importantly, the system can infer neighbor-
hood relationships based on the tag-stream, i.e., the
order in which tag IDs are being fed into the system
from the reader. This might allow the system to em-
ploy smart exploration algorithms that start from a
known tag and corresponding ID-level and search both
neighboring tags and neighboring ID-levels for more file
fragments.

6. Conclusions

We have designed and built a system for localized,
secure storage, based on SDRI. The initial prototype
vividly demonstrates the potential of this application,
and allows us to explore the uses and limits of this
principle.

Our initial analysis confirms both the feasibility of
the approach, as well as its resistance to trivial explo-
ration attacks. Information that has been stored at a
particular place can only be retrieved by either saving
the tag IDs that have been used, or by revisiting the
storage place. In the latter case, ID-updates and ID-
fading makes retrieval incrementally harder, eventually
rendering very old information inaccessible by all but
those who retained the access IDs.

A number of improvements are possible from this
initial prototype. The storage system is currently only
an in-memory hash table. Using some freely avail-
able P2P-frameworks, a corresponding distributed ver-
sion of the memory could be devised. This would
also need to address the problem of eventually delet-
ing memory locations whose IDs have faded away for
good, e.g., using common caching strategies such as
LRU (last recently used) or NRU (not recently used).
Also, fragment reassembly could further be improved
by incorporating clever ID-space exploration strategies
and adding corresponding user interface mechanisms to
provide position guidance. Last not least, some mobile
reader device could be devised in order to create sample
applications, e.g., for memory prostheses or distributed
vehicular information systems.

7. Acknowledgements

Lukas Stucki was instrumental in implementing and
analyzing the FragDB prototype as part of his Mas-
ter’s thesis. Ruedi Arnold provided helpful comments

on earlier drafts of this paper. This work has been
partially funded by Hitachi Systems Development Lab-
oratories (SDL), Japan, who also provided the µ-chip
RFID equipment.

References

[1] G. D. Abowd. Classroom 2000: An experiment with
the instumentation of a living educational envrion-
ment. IBM Systems Journal, 38(4):508–530, Oct.
1999.

[2] J. Bohn and F. Mattern. Super-distributed RFID
tag infrastructures. In Ambient Intelligence – Second
European Symposium, EUSAI 2004, Eindhoven, The
Netherlands, Nov. 8–11, 2004, Proceedings, volume
3295 of Lecture Notes in Computer Science, pages 1–
12, Berlin Heidelberg New York, Nov. 2004. Springer.

[3] B. Brumitt, B. Meyers, J. Krumm, A. Kern, and S. A.
Shafer. Easyliving: Technologies for intelligent envi-
ronments. In P. J. Thomas and H.-W. Gellersen, edi-
tors, HUC, volume 1927 of Lecture Notes in Computer
Science, pages 12–29. Springer, 2000.

[4] W. Geyer, H. Richter, L. Fuchs, T. Frauenhofer,
S. Daijavad, and S. Poltrock. A team collabora-
tion space supporting capture and access of virtual
meetings. In C. S. Ellis and I. Zigurs, editors,
GROUP ’01: Proceedings of the 2001 International
ACM SIGGROUP Conference on Supporting Group
Work, pages 188–196, New York, NY, USA, 2001.
ACM Press.

[5] J. I. Hong and J. A. Landay. An architecture for
privacy-sensitive ubiquitous computing. In MobiSYS
’04: Proceedings of the 2nd international conference
on mobile systems, applications, and services, pages
177–189. ACM Press, 2004.

[6] B. Johanson, A. Fox, and T. Winograd. The interac-
tive workspaces project: Experiences with ubiquitous
computing rooms. Pervasive Computing, 1(2):67–74,
Apr. 2002.

[7] T. Kindberg, K. Zhang, and N. Shankar. Context
authentication using constrained channels. In Mobile
Computing Systems and Applications, 2002. Proceed-
ings of the Fourth IEEE Workshop, pages 14–21. IEEE
Press, 2002.

[8] M. Roman, C. Hess, R. Cerqueira, A. Ranganathan,
R. H. Campbell, and K. Nahrstedt. A middleware in-
frastructure to enable active spaces. Pervasive Com-
puting, 1(4):74–83, Oct. 2002.

[9] G. Sampemane, P. Naldurg, and R. H. Campbell. Ac-
cess control for active spaces. In Proc. of the 18th An-
nual Computer Security Applications Conference (AC-
SAC’02), pages 343–352. IEEE Press, Dec. 2002.

[10] N. Sastry, U. Shankar, and D. Wagner. Secure verifi-
cation of location claims. In WiSe ’03: Proceedings of
the 2003 ACM workshop on Wireless security, pages
1–10, New York, NY, USA, 2003. ACM Press.

[11] A. Shamir. How to share a secret. Comm. of the ACM,
22(11):612–613, 1979.

8

