
Issuesin Smartcard Middleware

RogerKehr
T-NovaResearchLabs
DeutscheTelekomAG

roger.kehr@telekom.de

MichaelRohs
Instituteof InformationSystems

ETH Zurich
rohs@inf.ethz.ch

HaraldVogt
Instituteof InformationSystems

ETH Zurich
vogt@inf.ethz.ch

1. Intr oduction

One of the main obstaclesto the unification of smart-
cardusageis the specializationof applicationsandproto-
cols usedbetweenthe cardand the terminals. Even with
Java cardsthis will not change,sincethereis no standard-
ized way of exhibiting a smartcard’s interfaceto the out-
sideworld. Smartcardscommunicateby exchangingbyte
sequences,APDUs,which areonly weaklystructured.For
theeaseof parsing,this is oftendoneby usingTLV encod-
ings,but in general,eachcardtypedefinesits own formats.

Traditionally, theseformatsarestandardizedby largein-
stitutionalbodies. However, standardizationefforts suffer
from their high costandtherapidchangeof market needs.
Practicalinteroperabilitythereforecannotbe achieved by
standardizingcardapplicationinterfaces.

Smartcardsheavily dependon theenvironmentthey are
usedin. Sincethesesystemsaregenerallyequippedwith
morecomputingresourcesthansmartcards,the key to in-
teroperabilitycould lie within moresophisticated,general-
ly applicabletechniquesthathelp to discover cardservices
andgrantaccessto them.Thesetechniquesshouldsupport
thefollowing issues:

– Spontaneousintegration of cards. Thereshouldbe
minimal effort requiredto make an existing system
work with new cards. Vice versa,it shouldbe easy
to setup anew systemusingexisting cards.

– Transparent usageof card services. The system
shouldnothaveto careaboutany detailsregardingthe
communicationto theservicesthatreston thecard.

– Remote access. Card servicesshould be available
within a distributed environment. For example, the
samecard,but differentservices,couldbeusedfor ter-
minal login andaccountingphonecalls.

– Security. Only the legal owner of the card must be
ableto initiate the useof cardservices.Transactions
haveto beauthorizedby thecardowner.

This paper shortly describesthe JiniCard framework
which was developedto enablethe seamlessintegration
of smartcardsin distributed environments. We give an

overview of the systemand discusssomesecurity issues
in more detail. The system’s implementationis available
at [4].

2. The JiniCard Framework

In this section,we give a shortoverview of the system
designandshow how therequirementsaretackled.A more
detaileddescriptionof the framework canbe found in [5].
Securityissuesarediscussedin thenext section.

2.1. DesignOverview

The JiniCard systemis comprisedof two major part-
s. Onepart consistsof a componentthat directly controls
the card reader, while the otherpart lies within the “net”.
Thecoreof thecardterminalcomponentis theCardExplor-
erManager (CEM). The taskof this componentis to man-
agethe explorationprocessof the card. The network part
supportsthe CEM by providing card and servicespecific
components.

Figure1 showsthecomponentsof thesystem.Thelower
layeroffersbasicoperationsto accesscardreaderfunctions
remotely. Its software partsand the CEM are physically
locatedon the cardterminal. All othercomponentsreside
onremotelocationsandarerequestedfor codeobjectsonly
whenneeded.

2.2. Functional Description

The main ideaof the JiniCardframework is to keepall
functionalitythatis requiredto interactwith a specificcard
serviceremotely on the net. It is loadedonly when the
respective card is actually insertedinto the reader. There
needsto be a mappingbetweenthe cardand the location
wheretherequiredcodecanbefound. This mappingis es-
tablishedin two steps.

In the first step, the CEM readsthe ATR (or multiple
ATRs, if the card issuesmore than one) of the card and

1



Lo
w

er
 L

ay
er

Jini enabled smart card terminal

Terminal SmartCard

CardExplorerManager
www.atr.net

ATRMapper

CardExplorer1 CardExplorern

FooCardService

BarCardService

www.fooservice.com

www.barservice.com

(physical)
Smartcard

U
pp

er
 L

ay
er

JiniCard services and their originsSmart card exploration mechanism

(p
hy

si
ca

l)
T

er
m

in
al

...

Figure 1. Components of the JiniCard framework

compilesa (HTTP) requestwhich is sentto a server at a
well-known address,e.g.www.atr.net.

This server returnsa set of referencesto CardExplor-
er (CE) objectswhich are likely to be able to handlethat
typeof smartcards.Sincethemappingis basedon theATR
stringsonly, it might not be possibleto reliably determine
the propercardexplorer. However, this is resolved in the
next explorationstep

In thesecondstep,all CEsareaskedtoexplorethesmart-
card.This resultsin a setof ServiceInfo(SI) objects.Each
SI object correspondsto a servicewhich resideson the
smartcardandfor which a CE existswhich wasableto dis-
cover the service. A SI objectcontainsanotherreference
to a pieceof code,the respective CardService(CS).A CS
objectis instantiatedat thecardreaderto manageaccessto
the card residentpart of the service. Another object, the
ServiceProxy(SP),canbeobtainedthroughtheCS.SPsare
transferredto the serviceclientsto offer theman interface
to theservice.They communicatedirectly to their peerCS
objects.

2.3. Embedding in a Jini Envir onment

Theimplementationof our framework makesuseof the
codeinstantiationfacilitiesofferedby Java. Theclassload-
ing mechanismsoffer aconvenientmethodfor instantiating
objectsfrom (remotelyloaded)JAR files. Thecentralserv-
er at www.atr.netkeepsa setof thesefiles, eachcontaining
theclassesneededby acardexplorer.

TheCSsarealsostoredin JAR files andareinstantiated
throughaspecialclassloaderwhich implementsfurtherop-
timizationssuchascachingof alreadyknown cardservices.

Jini [7] comesinto play whencardservicesareto bean-
nouncedin a distributedenvironment. Jini offers methods
for clientsto look up whetherneededservicesareavailable
andalsosupportsmany of the administrative taskslinked
with the use of remoteservices(such as timeoutswhen
clientscrashor servicesbecomeunavailable).

The centralcomponentof Jini, the Lookup Service,is
usedto storeserviceproxy objectswhich implementinter-
facesto their respective services. Clients sendqueriesto
theLookupService,askingfor proxieswhich implementa
certainserviceinterface.A suitableproxy is downloadedto
theclientwhichcanusethisobjectto establishacommuni-
cationto theactualservice,which resideson thesmartcard.

Weassumethatthecardterminalhassufficientresources
to participatein a Jini federation. This requiresa rela-
tively large amountof computingandstoragecapabilities.
But sinceJini is usedonly for the announcementof card
services,the requirementsimposedon terminalscould be
weakenedin morestaticenvironmentswherecomponents
areequippedwith knowledgeabouteachother.

However, weregardtheflexibility of dynamiccodeload-
ing ascrucial in achieving a high degreeof interoperability
betweenawidevarietyof applicationsandsmartcards.The
responsibilityof implementingserviceproxiesis shiftedto
theserviceimplementorswhogainfreedomin thedesignof
theirservices.Anyway, theproblemof standardizedservice
interfacesremains,but on a muchhigherlevel, i.e. on the
level of Java interfaces.

2



2.4. Discussion

Theonly informationthatcanbereliablyusedfor identi-
ficationof smartcardslieswithin theATR. We usetheATR
to roughlydeterminewhichcardexplorerscouldbesuitable
for further investigationof the card. Sincecardexplorers
arenot storedin the cardterminal itself but kept remotely
on thenetwork, it is easilypossibleto introducenew cards
by providing a new cardexplorer; no local interventionis
necessary.

Transparentusageof cardservicesis providedby service
proxies. All detailsof theprotocolsusedby thesmartcard
areencapsulatedwithin the proxy. From an application’s
pointof view, theserviceis representedby aJava object.

Conventionalsmartcardservicesare designedto work
with asingleclient. Interleaving cardsessionsarenormally
not allowed. As with Java cards,this restrictionis easedto
somedegree.

Within our framework, it is possiblefor multiple clients
to downloadproxiesthat talk to a singlesmartcard.Prob-
lemsarisewhentheseproxiestry to talk to thecardconcur-
rently. This happens,whena proxy initiatesa conversation
with somecardappletandsendsanAPDU to thecard,and
anotherproxy doesthe sameright afterwards. The cardis
thenlikely to producenomeaningfulanswer;it is evenpos-
siblethatdatawill get lost.

To avoid this, we introducedthe possibility for proxies
to gainexclusiveaccessto a smartcardby acquiringa lock.
Thecardterminalguaranteesthatno otherproxy’sAPDUs
aresentto thesmartcarduntil thelock is released.

A typical interactionwith a JavaCardis somewhat dif-
ferent.An appletis selected,thena sequenceof APDUsis
exchanged.Sincethereis no (card-)global stateinforma-
tion storedwithin an applet,it posesno problemto dese-
lect an appletat any time andreselectit againto continue
theconversation.Thisenablesconcurrentusageof different
appletson a singlecard.To handlethis transparentlyto the
clients,thereexistsa conveniencemethodnamedsetSe-
lectAPDU in theSmartCard interfacewhich is usedto
defineanAPDU for re-selectingtheapplet.

3 Secure RemoteSmartcard Access

In theprevioussectionwe have outlinedanarchitecture
that allows a smartcardto offer servicesin a network by
meansof aproactiveexplorationmechanisminitiatedby the
cardterminal.ClientsaccessthesecardservicesthroughJi-
ni serviceproxiesthatusethebasicinterfacemethodsof the
cardterminalto communicatewith thecard-residentportion
of theservice.Themostobviousproblemwith suchanap-
proachis thesecureaccessfrom remoteclientsto thecard,
and the problemof the cardholderverificationprocedure
(CHV).

3.1 Card Holder Verification

In traditionalsmartcardscenariosreadersareattachedto
terminalswith which thecardholderperformsCHV to un-
lock thecardfor security-sensitive operations.This canbe
thePIN typedinto anATM, or thePIN enteredinto a GSM
handsetto activatethenetwork authenticationprocedure.

Theunderlyingassumptionwith thisapproachis thatthe
communicationlink betweenthe pinpador keyboardand
thesmartcardis secureandcannotbeeavesdroppedor tam-
peredwith. For mostof thepracticalapplicationscenarios
smartcardsare usedin, this assumptionsoundsquite rea-
sonable.In thescenariosdescribedin our servicearchitec-
ture though,the link betweenthe client andthe smartcard
must potentially be consideredas untrustedand insecure,
andspecialprecautionshave to betaken.

3.2 End-to-End Security Approaches

Theultimatesolutionto this problemwould be to com-
pletely encrypt all information exchangedbetweenthe
client andthe smartcard.This would imply that the tradi-
tional ISO 7816interfacebasedon APDUscannotbeused
anymoresinceit assumesunencryptedAPDUs exchanged
with the environment. Mechanismslike secure messaging
[3] areonly suitableto encryptandauthenticatethedatapart
of APDUs, but not the classand instructionbytes. Tam-
peringwith headerinformationcanbedetectedby addinga
digital signatureof theheaderdatato thebodyof anAPDU.
But not encryptingheaderinformationleavesopportunities
for eavesdroppers.If the whole APDU is encrypted,then
thestructureof the APDU becomesmeaningless.Suchan
APDU couldonly beinterpretedafterdecryption.

In additionto sucha completelynew cardinterfacewe
would run into a key distribution problemin casewe use
symmetricalgorithmsfor encryption.Eithertheproxycon-
tainsthe secretkey in its state,which could potentiallybe
observedin someruntimeenvironmentandexploitedto de-
crypt futuresessionswith sucha smartcard.A bettersolu-
tion would beto useprotocolssimilar to SSL/TLS[1] that
useasymmetricencryptionto agreeonasharedsessionkey
betweenaclientandaserver. Wearein theprocessof inves-
tigatingsuchanapproachby implementingtheserver-side
portionof theSSLprotocolon asmartcard.

3.3 SecureSessionManagementvia SSL

If we cannotrely on end-to-endsecuredcommunication
with a smartcardwe canrequirethe cardterminalitself to
be a secureplatform. In this casewe could, e.g., require
any communicationfrom anetwork client to betransported
over SSL. This could be done,for instance,by tunneling
JavaRMI invocationson topof SSLfor whichoff-the-shelf

3



solutionsareavailable,e.g.[6]. As a first step,this would
offer encryptedcommunicationbetweenthe client andthe
card terminal. Of coursewe must trust the card terminal
not to compromisesuchanapproach.Currentpractice,e.g.
ATM machines,operatewith the sametrust model. This
makesusconfidentto considerthisapproachasfeasiblefor
many applicationdomains. The main differencebetween
ATM machinesandPCsasterminalsis that theformerare
stronglyphysicallysecured,whereasthedegreeof physical
protectionof PCsis notashigh.

Simplyencryptingcommunicationto thecardterminalis
notsufficient, though.It wouldhelpto performa securere-
motecardholderverification,but leavesthecardunlocked
for a certainperiodof time. If anintrudermanagesto send
APDUs to the cardvia the terminal while the card is un-
locked,thesystemcouldbecompromised.

A solutionwouldbeto closelycoupleoperationsthatre-
quire privilegedaccessto the cardandSSL sessions.The
cardterminalthatoffersaccessvia SSLcanuniquelyiden-
tify peersbasedon thesymmetricsessionkeysusedfor en-
crypting and authenticatingthe communication. When a
client performsa cardholderverificationthecardterminal
recordsthepeer’s identity. Furtherrequeststo this cardare
only allowedfrom theSSLcommunicationchannelthathas
unlockedthecard.This effectively blocksany APDUssent
from otherclientsuntil the cardis resetagainandlocked.
This is essentiallya variant of the semaphoreoperations
beginMutex/endMutex methodsofferedby the termi-
nal.

4. RelatedWork

Closelyrelatedto our approachof smartcardintegration
is the OpenCardFramework [2]. Originally, OCF wasde-
signedto run within a singleJava VM which would block
cardreadersto otherapplications.Also, it hasno support
for remotesmartcardaccess. The proxy conceptis used
to hide the protocol to the serviceimplementationon the
smartcard. Similar to our approachis the use of Card-
ServiceFactoryobjectswhich produceJava objectsthrough
which cardresidentservicescanbeaccessed.Anyway, we
foundtheconceptinsufficient.

OCF usesan “applicationdriven” paradigm.An appli-
cation,which runsin thesameJava VM asOCFitself, asks
for a particularcardserviceandwaits until a card imple-
mentingthatcardservicearrives.Thecardremainspassive
anddoesnot get a chanceto announceits capabilitiesand
availableservices.To achieve this goal, a proactive para-
digm is needed,in which the cardis asked for its services
thatarethenmadeavailableto theenvironment.

AlthoughOCFdefinesinterfacesandclassesfor applica-
tion andcardmanagement,they arerealizedonly rudimen-
tary. In particular, themappingfrom servicedescriptionsto

serviceinstancesis not defined.
OCF is a statically configuredframework, where all

availableservicesmustberegisteredin a configurationfile.
Thisis in oppositionto therequirementof spontaneousinte-
grationthatwe identifiedasanimportantissuein smartcard
middleware.

5. Conclusion

We have motivatedthe needfor a standardway of ex-
hibitingasmartcard’sinterfaceto theoutsideworld. Thisis-
sueis still notsolvedwith theadventof Javacards,because
theJava cardapproachdoesnot changethebasicmeansof
interactionwith smartcards,namelythroughAPDUs.

Smartcardsdependontheirenvironmentsto provideuse-
ful servicesandarealsoinherentlyportableby their human
owners.Giventhesecharacteristicswe have identifiedfour
key areas,which needto be taken into accountby middle-
warethataimsfor theinteroperabilityof smartcards.These
arespontaneousintegrationinto environments,transparent
usageof cardservices,remoteaccessto cardservices,and
securitythat is effectively controllableand observableby
thecard’sowner.

We havegivena brief descriptionof theJiniCardframe-
work, which aimsat the seamlessintegrationof smartcard
servicesinto distributedenvironments. JiniCardrelies on
the dynamicdownloadof codeto identify and instantiate
the servicesthat areavailableon a smartcard.It provides
a well-definedplatform for the executionof card-external
partsof cardservices.

To achieve spontaneousintegration into environments
wechoseJini astheunderlyingmiddlewaretechnology, be-
causeJini’s objective expresslyis to provide simplemech-
anismswhich enabledevices to plug togetherto form an
impromptucommunity.

Ourapproachis easilyextensibleby uploadingnew card
explorersto awell known webserverandby providing card
serviceimplementations.It alsohandlesmutualexclusion
of multiple clientsthat try to usea cardconcurrently. The
independenceof appletson Javacardsseemsto makearel-
atively transparentschedulingapproachpossible.

Accessingsmartcardsremotely posesnew security is-
sues.In particular, theassumptionthat thecommunication
betweenclientsandcardservicesis secureno longerholds.
Communicationbetweenclients in the net and smartcard
servicescan potentially be observed (eavesdropping)and
even altered(tampering).Thereforeit is consideredprob-
lematicto completelyunlock a cardvia cardholderverifi-
cation. New approacheshave to be investigatedto ensure
the securityof card-to-servicecommunication.Onesolu-
tion thatwe arecurrentlyinvestigatingis to implementthe
server-sideportionof theSSLprotocolonasmartcardor on

4



theterminalattachedto thesmartcardreader. Thismakesit
possibleto geographicallyseparateacardfrom its client.

Acknowledgements

We would like to thank JoachimPosegga for inspiring
discussionsat thebeginningof theJiniCardproject.

References

[1] T. DierksandC. Allen. TheTLS ProtocolVersion1.0. Inter-
netRFC2246,Jan.1999.

[2] U. Hansmann,T. Scḧack, F. Seliger, and M. S. Nicklous.
SmartCard ApplicationDevelopmentUsingJava. Springer-
Verlag,1999.Seealsowww.opencard.org.

[3] InternationalStandardsOrganization. International Stan-
dard ISO/IEC7816: IdentificationCards- IntegratedCircuit
Cardswith contacts, 1989.

[4] JiniCard.http://www.inf.ethz.ch/
�

rohs/JiniCard/.
[5] R. Kehr, M. Rohs, and H. Vogt. Mobile Codeas an En-

abling Technologyfor Service-orientedSmartcardMiddle-
ware. In The 2nd International Symposiumon Distribut-
ed Objectsand Applications(DOA). IEEE ComputerSoci-
ety Press,2000. http://www.inf.ethz.ch/department/IS/vs/publ/
papers/jinicard.pdf.

[6] A. Popovici. ITISSL - A Java 2 Implementationof the SSL
API basedon SSLeay/OpenSSL.http://www-sp.iti.informatik.
tu-darmstadt.de/itissl/, 1999.

[7] J.Waldo.TheJini Architecturefor Network-centricComput-
ing. Communicationsof theACM, 42(7):76–82,July1999.

5


