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Abstract—Many efforts are centered around creating large-
scale networks of “smart things” found in the physical world (e.g.,
wireless sensor and actuator networks, embedded devices, tagged
objects). Rather than exposing real-world data and functionality
through proprietary and tightly-coupled systems, we propose to
make them an integral part of the Web. As a result, smart
things become easier to build upon. Popular Web languages
(e.g., HTML, Python, JavaScript, PHP) can be used to easily build
applications involving smart things and users can leverage well-
known Web mechanisms (e.g., browsing, searching, bookmarking,
caching, linking) to interact and share these devices. In this
paper, we begin by describing the Web of Things architecture and
best-practices based on the RESTful principles that have already
contributed to the popular success, scalability, and modularity of
the traditional Web. We then discuss several prototypes designed
in accordance with these principles to connect environmental
sensor nodes and an energy monitoring system to the World Wide
Web. We finally show how Web-enabled smart things can be used
in lightweight ad-hoc applications called “physical mashups”.

I. INTRODUCTION

A central concern in the area of pervasive computing has
been the integration of digital artifacts with the physical world.
In particular, the “Internet of Things” has essentially explored
the development of applications built upon various networked
physical objects [1]. Inhabitants of the physical world such
as sensor and actuator networks, embedded devices, appli-
ances and everyday digitally enhanced objects (subsequently
called smart things) are, for the most part, disconnected from
the Web and form a myriad of small incompatible islands.
Increasingly, embedded devices and consumer electronics as
for example Chumby,1 IoBridge,2 or Nabaztag3 get Internet
(and sometimes Web) connectivity but, however, cannot be
controlled and monitored without dedicated software and pro-
prietary interfaces. As a consequence, smart things are hard to
integrate into composite applications, which severely hinders
the realization of a flexible ecosystem of devices that can be
reused serendipitously.

The Internet of Things has mainly focused on establishing
connectivity in a variety of constrained networking environ-
ments, and the next logical objective is to build on top of
network connectivity by focusing on the application layer. In

1http://www.chumby.com
2http://www.iobridge.com
3http://www.nabaztag.com

the Web of Things (WoT), we are considering smart things as
first-class citizens of the Web. We position the Web of Things
as a refinement of the Internet of Things by integrating smart
things not only into the Internet (the network), but into the
Web (the application layer).

To achieve this goal, we propose to reuse and adapt patterns
commonly used for the Web, and introduce an architecture for
the Web of Things. We embed Web servers [2], [3], [4] on
smart things and apply the REST architectural style [5], [6] to
the physical world (see Section III-A). The essence of REST
is to focus on creating loosely coupled services on the Web
so that they can be easily reused [7]. REST is actually core
to the Web and uses URIs for encapsulating and identifying
services on the Web. In its Web implementation it also uses
HTTP as a true application protocol. It finally decouples
services from their presentation and provides mechanisms for
clients to select the best possible formats. This makes REST
an ideal candidate to build an “universal” API (Application
Programming Interface) for smart things. As the “client-pull”
interaction model of HTTP does not fully match the needs
of event-driven applications, we further suggest the use of
syndication techniques such as Atom and some of the recent
real-time Web technologies to enable sensor push interactions
(see Section III-B).

As a consequence of the proposed architecture, smart
things and their functionality get transportable URIs that one
can exchange, reference on Web sites and bookmark. Smart
things are also linked together enabling discovery simply by
browsing. The interaction with smart things can also almost
entirely happen from the browser, a tool that is ubiquitously
available and that most users understand well [8]. Applications
can be built upon them using well-known Web languages
and technologies (e.g., HTML, JavaScript, Ajax PHP, Python,
Mashup tools, etc.) Furthermore, smart things can benefit from
the mechanisms that made the Web scalable and successful
such as caching, load-balancing, indexing and searching.

Since some devices cannot connect to the Internet or fully
implement the REST architectural style, we finally propose
the use of Smart Gateways [9] which are embedded Web
servers that abstract communications and services of non Web-
enabled devices behind a RESTful API (see Section IV). In
Section V, we illustrate the WoT architecture by means of



several prototypes. We begin by applying these to sensors,
actuators and energy meters and show how simple Web
applications can be built upon these smart things. We then
show that a Web of Things makes it possible for tech-savvy
end-users to create physical mashups involving smart objects
just as they would create Web mashups.

II. RELATED WORK

Linking the Web and physical objects is not a new idea.
Early approaches started by attaching physical tokens (such
as bar-codes) to objects to direct the user to pages on the Web
containing information about the objects [10]. These pages
were first served by static Web Servers on mainframes, then
by early gateway system that enabled low-power devices to be
part of wider networks [11]. The key idea of these work was
to provide a virtual counterpart of the physical objects on the
Web. URIs to Web pages were scanned by users e.g., using
mobile devices and directed them to online representation of
real things (e.g., containing status of appliances on HTML
pages or user manuals). With advances in computing technol-
ogy, tiny Web servers could be embedded in most devices [3],
[2]. The Cooltown project pioneered this area of the physical
Web by associating pages and URIs to people, places and
things [8] and implementing scenarios where this information
could by physically discovered by scanning infrared tags in
the environment. We would like to go a step further and to
propose an architecture to truly make smart things part of the
Web so that they proactively serve their functionality as re-
usable Web services.

A number of projects proposed solutions to expose the
functionality of smart things in order to build applications
upon. Among them, JINI, UPnP, DNLA, etc. The advent of
WS-* Web Services (SOAP, WSDL, etc.) led to a number
of work towards deploying them on embedded devices and
sensor networks [12], [13]. While helping towards the inte-
gration to enterprise applications, these solutions are often
too heavy for devices with limited capabilities [4], do not
directly expose the smart things’ functionality on the Web as
RESTful architectures do and are not truly loosely-coupled [7].
Several systems for integration of sensor systems with the
Internet have been proposed — for example SenseWeb [14]
and Pachube — which offer a platform for people to share their
sensory readings using Web services to transmit data onto a
central server. Unlike the Web of Things, these approaches are
based on a centralized repository and devices are considered
as passive actors only able to push data.

One of the first mentions of a Web of Things composed of
RESTful smart things comes from [15]. However it focuses
mainly on the discovery of devices and not on how to provide
their functionality on the Web. Closer to our work, [16] and in
particular [17] consider the use of REST-like architectures for
sensor networks. We build upon these approaches and propose
a systematic implementation of the RESTful constraints (see
Section III-A) and extend the model with the use of standard
Web syndication such as using Atom. Furthermore we do not
focus on the lower sensors level but explore the applications

from a Web view-point. We propose a unified view of the Web
of today and tomorrow’s Web of Things in applications called
“physical mashups”.

III. WEB OF THINGS ARCHITECTURE

Realization of the Web of Things requires to extend the
existing Web so that real-world objects and embedded de-
vices can blend seamlessly into it. Instead of using the Web
protocols solely as a transport protocol — as done when
using WS-* Web services for instance — we would like to
make devices an integral part of the Web by using HTTP
as an application layer protocol. The main contribution of
the “Web of Things” approach is to take the next logical
step beyond the network connectivity established by activities
often summarized under the “Internet of Things” label. Many
activities in the “Internet of Things” area put their emphasis on
establishing Internet-level connectivity (often in terms of TCP
and/or UDP), and then propose interaction protocols layered
on top of this basic connectivity. Often, these protocols follow
RPC-style designs, introducing their own functions and thus
requiring any users of these protocols to specifically support
the functions provided by these platforms. We propose to
follow a different architectural style and to use REST’s idea of
a uniform interface, so that the interactions with smart things
can be built around universally supported methods [7].

We do not make the assumption that devices must offer
RESTful interfaces directly provided by each individual thing.
In a number of cases it makes a lot of sense to shield the im-
plementation of a specific platform in terms of implementation
specifics, and to expose the resources made available by that
platform through a RESTful API. The interactions behind that
RESTful interface are invisible and often will include highly
specialized protocols for the specific implementation scenario.
Because REST has the concept of intermediaries as a core part
of the architectural style, such a design can easily be achieved
by modeling the RESTful service using intermediaries. By
using either proxies or reverse proxies (see Section IV) it is
furthermore possible to establish such an intermediary from
the client or from the server side, effectively introducing a
robust pattern of how non-RESTful services can be wrapped
in RESTful abstractions.

A. A Resource Oriented Architecture for Things

REST is an architectural style, which means that it is not
a specific set of technologies. For this paper, we focus on the
specific technologies that implement the Web as a RESTful
system, and we propose how these can be applied to the
Web of Things. The central idea of REST revolves around
the notion of resource as any component of an application
that needs to be used or addressed. Resources can include
physical objects (e.g., a temperature sensors) abstract concepts
such as collections of objects, but also dynamic and transient
concepts such as server-side state or transactions. REST can
be described in five constraints:
C1 Resource Identification: the Web relies on Uniform Re-

source Identifiers (URI) to identify resources, thus links



to resources (C4) can be established using a well-known
identification scheme.

C2 Uniform Interface: Resources should be available through
a uniform interface with well-defined interaction seman-
tics, as is Hypertext Transfer Protocol (HTTP). HTTP has
a very small set of methods with different semantics (safe,
idempotent, and others), which allows interactions to be
effectively optimized. The vast majority of Web-facing
applications offer RESTful interfaces, while the back-
ends are implemented using different interaction models
(such as database systems), and the same approach can
be employed for the Web of Things.

C3 Self-Describing Messages: Agreed-upon resource repre-
sentation formats make it much easier for a decentralized
system of clients and servers to interact without the
need for individual negotiations. On the Web, media
type support in HTTP and the Hypertext Markup Lan-
guage (HTML) allow peers to cooperate without indi-
vidual agreements. For machine-oriented services, media
types such as the Extensible Markup Language (XML)
and JavaScript Object Notation (JSON) have gained
widespread support across services and client platforms.
JSON is a lightweight alternative to XML that is widely
used in Web 2.0 applications and directly parsable to
JavaScript objects.

C4 Hypermedia Driving Application State: Clients of REST-
ful services are supposed to follow links they find in
resources to interact with services. This allows clients to
“explore” a service without the need for dedicated dis-
covery formats, and it allows clients to use standardized
identifiers (C1) and a well-defined media type discovery
process (C3) for their exploration of services. This con-
straint must be backed by resource representations (C3)
having well-defined ways in which they expose links that
can be followed.

C5 Stateless Interactions: This requires requests from clients
to be self-contained, in the sense that all information to
serve the request must be part of the request. HTTP
implements this constraint because it has no concept
beyond the request/response interaction pattern; there
is no concept of HTTP sessions or transactions. It is
important to point out that there might very well be state
involved in an interaction, either in the form of state
information embedded in the request (HTTP cookies),
or in the form of server-side state that is linked from
within the request content (C3). Even though these two
patterns introduce state into the service, the interaction
itself is completely self-contained (does not depend on
the context for interpretation) and thus is stateless.

In HTTP, the uniform interface constraint (C2) has four
main operations, GET, PUT, POST, and DELETE. In a Web
of Things these map rather naturally: GET is used to retrieve
the representation of a resource, e.g., the current consumption
of an electricity sensor. PUT is used to update the state of
an existing resource or to create a resource by providing its

identifier. For example it can be used to turn a led on or off.
DELETE is used to remove a resource. It can for example be
used to delete a threshold on a sensor or to shutdown a device.
Finally, POST creates a new resource, e.g., creates a new feed
used to trace the location of a tagged object.

Tying together C2 and C3, HTTP also supports content
negotiation, allowing both clients and servers to communicate
about the requested and provided representations for any given
resource. Since content negotiation is built into the uniform
interface, clients and servers have agreed-upon ways in which
they can exchange information about available resource rep-
resentations, and the negotiation allows clients and servers
to choose the representation that is the best fit for a given
scenario.

REST is an active research topic and complex interactions
patterns (e.g, transactions) are not yet established as spec-
ifications or design patterns. Although the design goals of
RESTful systems and their advantages for a decentralized and
massive-scale service system align well the field of pervasive
computing: millions to billions of available resources and
loosely coupled clients, with potentially millions of concur-
rent interactions with one service provider. Based on these
observations, we argue that RESTful architectures are the most
effective solution for the Web of Things, as they scale better
and are more robust than RPC-based architectures.

The most important step in any RESTful design is the first
step of identifying all resources that should be made available,
and for a Web of Things, the smart things themselves would
naturally be prime candidates for this. However, sometimes
these things do not exist by themselves, but within certain
scenarios or groups through which they are accessed and
managed, which maps very well onto the syndication concept
described in the following section.

B. Syndicating Things

One common theme among many scenarios with smart
things is that there are collections of things, based on certain
properties or just on the application scenario. With Atom, the
Web has a standardized and RESTful model for interacting
with collections, and the Atom Publishing Protocol (AtomPub)
extends Atom’s read-only interactions with methods for write
access to collections. Because Atom is RESTful, interactions
with Atom feeds can be based on simple GET operations which
can then be cached. More advanced scenarios can be based on
feeds supporting query features, but this is an active area of
research and there are not yet any standards [18]. Atom also
makes it possible to support asynchronous scenarios in a WoT
where clients can monitor smart things by subscribing to feeds
and pulling a feed server instead of by directly pulling data
from each smart thing.

However, many pervasive scenarios must deal with real-
time information. This is particularly useful when one needs
to combine stored or streaming data from various sources to
detect spatial or temporal patterns, as is the case in many
environment monitoring applications. HTTP was designed
as a client-server architecture, where clients can explicitly



request (pull) data and receive it as a response. This makes
REST well suited for controlling smart things over HTTP,
but this client-initiated interaction models seems unsuited for
event-based and streaming systems, where data must be sent
asynchronously to the clients as soon as it is produced.

For scenarios requiring direct push, various research efforts
are currently active. One is a model called Comet (also
called HTTP streaming or server push) [19] which is mostly
based on long-lasting HTTP interactions and tries to solve the
problem purely based on existing infrastructure. An alternative
approach is PubSubHubbub4, which starts with feeds, and then
adds a layered infrastructure of nodes which are forwarding
notifications and accept subscribers. On a different level are
HTML5’s Server-Sent Events5, which provide hooks to re-
ceive push notifications in regular browser-based applications.
HTML5’s Web Sockets6 provide a full-duplex communication
in the form of a connection opened in the Web browser and
accessible through a JavaScript API.

IV. CONNECTING THINGS TO THE INTERNET

To make smart things part of the Web, two solutions are
possible: direct Web connectivity on the devices or through a
proxy. Previous work has shown that embedded Web servers
on resource constrained devices is feasible [3], [4], and it is
likely that in the near future most embedded platforms will
have native support for TCP/IP connectivity (in particular with
6LowPAN [2]), therefore a Web server on each device is a
reasonable assumption. This approach is sometimes desirable
because there is no need to translate HTTP requests from Web
clients into the appropriate protocol for the different devices,
thus devices can be directly integrated and make their RESTful
APIs directly accessible on the Web, as shown on the right part
of Figure 1.

Browse Web Server

Link / 
Bookmark

Physical 
Mashups

Smart Gateway

Driver 1 Driver 2

BT ZigBee

Lightweight
Web Server

RESTful 
API

Syndicat.

RESTful API

Event Hub

Web Cloud

Fig. 1. Web and Internet integration with Smart Gateways (bottom), direct
integration (upper-right).

However, when an on-board HTTP server is not possible
or not desirable, Web integration takes place using a reverse

4http://code.google.com/p/pubsubhubbub/
5http://dev.w3.org/html5/eventsource/
6http://dev.w3.org/html5/websockets/

proxy that bridges devices that do not talk IP with the Web.
We call such as proxy a Smart Gateway to encapsulate the
fact that it is a network component that does more than only
data forwarding. A Smart Gateway is actually a Web server
that abstracts behind a RESTful API the actual communication
between devices and the gateway (e.g., Bluetooth or Zigbee)
through the use of dedicated drivers. From the Web clients’
perspective, the actual Web-enabling process is fully transpar-
ent, as interactions are based on HTTP in both cases.

As an example, consider a request to a sensor node coming
from the Web through the RESTful API. The gateway maps
this request to a request into the proprietary API of the node
and transmits it using the communication protocol understood
by the sensor node. A Smart Gateway can support several
types of devices through a driver architecture as shown on
Figure 1 where the gateway supports three types of devices
and their corresponding communication protocols. Ideally,
gateways must have a small memory footprint to be integrated
into embedded computers already present in buildings such as
Wireless routers or Network Attached Storage (NAS) devices.

V. PROTOTYPING THE WEB OF THINGS

In this section we present several prototypes we have
developed to illustrate our proposed architecture for the Web
of Things.

A. A Smart Gateway for Smart Meters

With this prototype we start by illustrating the application of
the WoT architecture for monitoring and controlling the energy
consumption of households. We used intelligent power sockets
called Plogg that can measure the electricity consumption of
the devices plugged into them. Each Plogg is also a wireless
sensor node that communicates over Bluetooth or Zigbee.
However, the integration interface offered by the Ploggs is
proprietary, which makes the development of the applications
using Ploggs rather tedious, and does not allow for easy Web
integration.

The Web-oriented architecture we have implemented using
the Ploggs is based on four main layers. The first layer is com-
posed of appliances we want to monitor and control through
the system. In the second layer, each of these appliances is
then plugged to a Plogg sensor node. In the third layer, the
Ploggs are discovered and managed by a Smart Gateway as
described before. The final layer is the Web user interface.

The Ploggs Smart Gateway is embedded component whose
role is to automatically find all the Ploggs in the environment
and make them available as Web resources. The Gateway
first discovers the Ploggs on a regular basis by scanning the
environment for Bluetooth devices. The next step is to make
their functionality available as RESTful resources. A small
footprint Web server (Mongoose7) is used to enable access
to the Ploggs’ functionalities over the Web. This is done
by mapping URIs to native requests of the Plogg Bluetooth
API. Additionally to discovering the Ploggs and mapping

7http://code.google.com/p/mongoose



their functionalities to URLs, the gateway has two other
important features. First, it offers local aggregates of device-
level services. For example, the gateway offers a service
that returns the combined electricity load of all the Ploggs
connected to it at any given time. The second feature is that
the gateway can represent resources in various formats. By
default an HTML page with links to the resources is returned
to ensure browsability. Using this representation the user can
literally “navigate” through the structure of smart meters to
identify the one she wants to use and directly test them by
clicking on links (e.g., for the HTTP GET method) or filling
forms (e.g., for the POST method). The gateway can also
represent resources as JSON results to ease the integration
with other Web applications. To illustrate how we apply the
HTTP standards and REST, let us briefly describe an example
of interaction between a client application (e.g., written in
AJAX) and the Ploggs’ RESTful Smart Gateway. First, the
client contacts the root URI of the application
http://example.com/SmartMeters/

with the GET method. The client gets back as a result the
list of all the SmartMeters connected to the gateway. The
selection of the suitable format for the client is achieved during
a content negotiation phase (C2, C3), specified in HTTP. Thus,
alongside with the GET request, the client sets the Accept
field of the HTTP request to a weighted list of media types it
can understand, for example to: application/json;q=1,
application/xml;q=0.5. The server will try to serve
the best possible format and will describe it in the
Content-Type of the HTTP response.

Since the required format is a key parameter, we suggest
supporting content negotiation directly in the URI as well in
order to make it more natural for everyday users, directly
testable and bookmarkable. Thus, our gateway supports re-
quests such as
http://example.com/SmartMeters.json

as well. As a second step, the client selects the device it wants
to interact with identified by a URI (C1):
http://example.com/SmartMeters/RoomLamp.json

By issuing a GET request on this resource it gets back its
JSON representation as shown on Figure 2. In the response
message of Figure 2 the client finds energy consumption data
(e.g., current consumption, global consumption, etc.) as well
as hyperlinks to related resources. Using these links the client
can discover other related “services”, fulfilling the constraint
(C4) and enabling the discovery of resources.

As an example by contacting
http://.../RoomLamp/status

with the OPTIONS method from the HTTP standard, the
client gets back the methods allowed on the status resource
(e.g., Allow: GET, HEAD, POST, PUT). By sending
the PUT method to this URI alongside with the JSON repre-
sentation {‘‘status‘‘:‘‘off‘‘}, the lamp is turned off.
Overall, Web-enabling the Ploggs allows to build fully Web-
based energy monitoring applications, but also enables simple
but very useful interactions such as bookmarking connected
appliances and being able to turn on/off or monitor them from

HTTP/1.1 200 OK
Content-Type: application/json
{
"name": "RoomLamp", "watts": 60.52,
"KWh": 40.3, "maxWattage": 80.56,
"links": [{"aggregate": "../all"},
{"status": "/status"}, ...]

}

Fig. 2. A sample HTTP response sent back to the client. The message
contains HTTP headers as well as a JSON document in the message body.

any device with a Web browser.

B. Direct Access and Syndication of Wireless Sensor Networks

The Sun SPOT platform8 is a wireless sensor network
particularly suited for rapid prototyping of WSNs (Wireless
Sensor Networks) applications. Each Sun SPOT has a few sen-
sors (light, temperature, accelerometer, etc.), actuators (digital
outputs, LEDs, etc.), and a number of internal components
(radio, battery). A RESTful Web server is used to make the
sensors, actuators and internal components available as REST
resources. We have implemented the two Web integration
architectures presented in Figure 1. In the first case, an embed-
ded Web server runs on each node and serves directly HTTP,
and a (reverse) proxy server to forward the HTTP requests
from the Web to the SPOTs, that is from the IP network
of the Web to the IEEE 802.15.4 network of the Sun Spots
and vice-versa. In the second case — called synchronization-
based driver — we use the idea of Smart Gateway that
translates REST requests to proprietary protocols. The smart
gateway has a local copy of the devices and minimizes the
actual communication between devices and the Web by locally
caching the status of devices. In both cases, devices are
accessed transparently using actual HTTP requests. Just like
for the Ploggs, requests for services are formulated using URIs
(C1). For instance, typing a URL such as
http://.../spot1/sensors/light

in a browser, requests the resource “light” of the resource
“sensor” of “spot1” with the verb GET which illustrates that
the natural structure of embedded devices maps quite well to
resources.

The limited computing and storage capabilities of the nodes
allow to serve only a JSON representation of their resources.
To avoid too large workload on the node we also implemented
a syndication mechanism for the sensors. As mentioned before,
this also better fits the interaction model of sensor networks.
Thus, the nodes can be controlled (e.g., turning LEDs on,
enabling the digital outputs, etc.) using synchronous HTTP
calls (client pull), but can at the same time be monitored by
subscribing to feeds (node push). Subscription to a feed is
done by creating new “rules” on sensor resources, e.g., by
POSTing a threshold and the URI of an Atom(Pub) server to
http://.../spot1/sensors/light/rules

8http://www.sunspotworld.com



Every time the threshold is met, the sensor node pushes a
JSON message to the given Atom server using AtomPub. This
allows for thousands of clients to monitor a single sensor by
outsourcing syndication onto an external powerful server.

C. Physical Mashups

By implementing the suggested architecture for the Ploggs
and the Sun SPOTs, we enable the seamless integration of
these physical things into the Web, and enable a new range
of applications based on this unified view of the Web. We
consider these applications as “physical mashups” where Web
2.0 technologies and patterns can be applied to easily build
applications mixing both virtual resources and smart things,
and describe two such applications below.

1) An Energy-aware Web Dashboard: In this first example
we have created a mashup to answer an increasingly important
need for households to understand their energy consumption
and to be able to remotely monitor and control it. The idea
of the Energie Visible9 project is to offer a Web dashboard
that enables people to control and experiment with the energy
consumption of their appliances.

Thanks to the Ploggs Web integration, the dashboard can
be implemented using any Web scripting language. In this
particular case it is built as a Google Web Toolkit (GWT)10

application which is a robust platform for building Web
mashups and offers a large number of easily customizable
widgets. To dynamically draw the graphs according to the
current energy consumption, the application only needs to
issue an HTTP GET request to the gateway
http://example.com/SmartMeters/all.json

on a regular basis. It then feeds the resulting JSON document
to the corresponding graphs widgets which can directly parse
JSON.

2) A Physical Mashup Editor: Tech-savvy users can create
Web mashups using a “mashup-editor” such as Microsoft
Popfly or Yahoo Pipes. These editors usually provide visual
components representing Web sites and operations (add, filter)
that the user only need to connect together to create a
new application. We wanted to apply the same principles to
allow users to create physical mashups without requiring any
programming skills.

Our implementation is based on the Clickscript project11, a
Firefox plugin written on top of the Dojo AJAX library for
creating Web mashups by connecting resources (Web sites)
and operations (greater than, if..then, loops, etc.) building
blocks together. Since it is written in JavaScript, Clickscript
cannot use resources based on WS-* Web Services or low-level
proprietary service protocols, but it can easily access RESTful
services available on the Web. Thus, creation of Clickscript
building blocks (or widgets) based on Web of Things devices
is straightforward, just as is their combination into mashups.
The mashup shown in Figure 3 gets the room temperature by
GETting the Sun SPOT temperature resource. If this is smaller

9http://www.webofthings.com/energievisible
10http://code.google.com/webtoolkit/
11http://www.clickscript.ch

Fig. 3. Using the Web-based Clickscript Mashup Editor to create a physical
mashup by connecting building blocks directly from a browser.

than 36 degrees Celsius, it PUTs status=off to a Plogg
which turns off the fan it is connected to.

VI. EVALUATION

Our results suggest that the verbosity of the HTTP protocol
does not prevent highly efficient applications to be imple-
mented, even when low-power wireless nodes communicate
using HTTP in place of highly optimized and compressed
messages. In applications where the raw performance and
battery life-time are critical, for example when nodes run
on battery in large-scale and long-lived deployments — as
is often the case with wireless sensor network applications
— optimized protocols that minimize network connection and
latency will remain the best option. However, when devices are
connected to a power source and when sub-second latency can
be tolerated, then the advantages of HTTP clearly outweigh
the loss in performance and latency.

In many pervasive scenarios, humans are the main actors
that interact with digitally augmented environments. In most
of these cases, the loss in performance is hardly perceivable
by humans. To support this statement, we have implemented
a simple scenario where a user (on the same machine) issues
a GET request to read the current light sensor value of a
Sun SPOT located one radio hop away from a gateway. We
compare the two different architectures described in Section IV
and show the round-trip time for each request in Figure 4.
In the first case, each request is routed through the proxy to
the embedded HTTP server running on the remote Sun SPOT
where it is served. In this case, the average round-trip time
over 10’000 consecutive request is 205 milliseconds (min 97
ms, max 8.5 seconds).

In the second case, we use a synchronization-based ar-
chitecture — that is each Sun SPOT periodically sends its
sensor readings to the proxy where they are cached locally.
Each request is then served directly from this cache without
accessing the actual device, in which case the average round-
trip time was 4 ms (min 2 ms, max 49 ms). This has the
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advantage of fully decoupling the Sun SPOT from the outside
world, as it only needs to send an update packet with a
frequency short enough to ensure the validity of data. On the
other hand, the staleness of the retrieved data will depend on
the frequency of updates sent by the device, while routing
the HTTP request has the advantage of returning always the
most recent sensor reading when the request was processed.
Figure 5 shows the age of sensor data (the radio propagation
delay with the embedded server, and the delay + time since
last update with the sync-based solution).

High-performance caches that can easily scale with the
number of concurrent HTTP requests are common nowadays.
This means that using a synchronization-based mechanism,
thousands of HTTP clients can retrieve simultaneously sensor
data from a single device with extremely low response time,
while still preserving the freshness of the data collected under

a reasonable bound for many applications. Obviously, this will
not hold true for non-cacheable (write) requests that must be
sent to devices (e.g., turn on LEDs, change application state).
As many distributed monitoring applications are usually read-
only during their operation (sensors collect data, but users can-
not change their status), our architecture exhibits a scalability
level for sensing applications that has not been reached before.
This enables new types of applications where physical sensors
can be shared with thousands of users with little, if any, impact
on the latency and data staleness, for example tracking public
transportation with sub-second accuracy.

a) Early Qualitative Evaluation: The Plogg RESTful
Gateway and the Sun SPOTs have been used by two external
development teams, which hints some of the qualitative advan-
tages developers can gain from the proposed the architecture.
In the first case, the idea was to build a mobile energy monitor-
ing application based on the iPhone and communicating with
the Ploggs. In the second case, the goal was to demonstrate
the use of a browser-based JavaScript Mashup editor with
real-world services. According to interviews we conducted
with the developers, they enjoyed using the RESTful smart
things, in particular the ease of use of a Web “API” versus
a custom “API”. For the iPhone application a native API to
Bluetooth did not exist at that time. However, like for almost
any platform an HTTP (and JSON) library was available. One
of the developer mentioned a learning curve for REST but
emphasized the fact that it was still rather simple and that once
it was learnt the same principles could be used to interact with
a large number of services and possibly soon devices. They
finally noted the direct integration to Web browsers as one of
the most prevalent benefits.

VII. DISCUSSION AND OPEN CHALLENGES

Web 2.0 mashups have significantly lowered the entry
barrier for the development of Web applications. Certainly,
a resource-oriented approach is not the universal solution
for every problem. Scenarios with specific requirements such
as high performance real-time communication, might benefit
from tightly coupled systems based on traditional RPC-based
approaches. However, for less constrained applications where
ad-hoc interaction and serendipitous re-use are required, Web
standards can simplify integration of the real-world data with
Web content. Applying the same design principles that con-
tributed to the success of the Web — in particular openness
and simplicity — leverages the versatility of the Web as
a common ground to network devices and applications. As
most mobile devices have already Web connectivity and Web
browsers, and most programming languages support HTTP,
we tap in the huge Web developer community as potential
application developers for the Web of Things and physical
things can be bookmarked, browsed, searched for, and used
just like any other Web resource.

Based on our experience, we suggest that the drawbacks
of Web architectures are largely offset by the simplification
of the design, integration, and deployment processes [4],
especially in comparison with other protocols for embedded



devices, such as SOAP-based Web services. Although HTTP
introduces a communication overhead and increases average
response latency, in many pervasive scenarios this overhead
does not affect user experience [17], [12]. For example, we
have argued [9] that the performance of using HTTP as a data
exchange protocol is mostly sufficient for common pervasive
scenarios, especially when only few users are accessing the
same resource simultaneously (200 ms average response time
was reported with 100 concurrent users on a 1.1 GHz server).

HTTP was designed as an architecture where clients initiate
interactions. This model works fine for control-oriented appli-
cations, however, monitoring-oriented applications are often
event-based and thus smart things should also be able to
push data to clients (rather than being continuously polled).
Using syndication protocols such as Atom and AtomPub
improves the model when monitoring, since devices can pub-
lish asynchronously data using AtomPub on an intermediate
server, nevertheless clients still have to pull data from Atom
servers. Adapting the client-server architecture is now a core
research topic in the Web community [19]. Standards such as
HTML5 are also going towards asynchronous bi-directional
communication and emphasize on how relevant it is to further
explore lightweight Web-based messaging systems.

Another important challenge for the global Web of Things
is the search and discovery of smart things. Consider billions
of things connected to the Web. Discovery by browsing HTML
pages with hyperlinks becomes literally impossible in this
case, hence the idea of searching for smart things. Searching
for things is significantly more complicated than searching
for documents, as things are tightly bound to contextual
information such as location, are often moving from one
context to the other and their HTML representations are less
keywords-rich than traditional Web pages. This problem is not
inherent to smart things but more generally a problem in de-
scribing services on the Web. Recent developments in semantic
descriptions that can be embedded in HTML representations
such as Microformats12 or RDFa will certainly help making
better sense of the services offered in the Web of Things.

VIII. CONCLUSION

In this article we describe the basics of the Web of Things
architecture. By formalizing the various design parameters
to consider, we provide a practical framework for users to
build their own WoT devices and applications. We illustrate
with concrete examples how various applications types can
be built on top of the proposed architecture, and propose
how the emerging real-time Web techniques can be applied
to develop Web-compliant, highly interactive and integrable
physical mashups. Finally, we provide an initial performance
analysis and discussions to support the future research efforts
that will make the Web of Things a reality.
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