
A Service Architecture for Monitoring Physical
Objects Using Mobile Phones

C. Frank, C. Roduner, P. Bolliger
Institute for Pervasive Computing

ETH Zurich
8092 Zurich, Switzerland

{chfrank, roduner, bolligph}@inf.ethz.ch

C. Noda
Communication Device

Development Department
NTT DoCoMo, Inc.

noda@nttdocomo.co.jp

W. Kellerer
Future Networking Lab

DoCoMo Communications
Laboratories Europe

kellerer@docomolab-euro.com

Abstract— Ubiquitous computing technology holds the promise
of enabling comprehensive localization services for any physical
object that is augmented with an electronic tag. Given an
adequate object sensing infrastructure (e.g., based on RFID
readers or sensor networks), the location of an arbitrary object
could be obtained at the touch of a button. However, the large
effort involved in installing a ubiquitous infrastructure of inter-
connected object sensing devices is one of the major obstacles for
implementing such attractive services. In this paper we describe
an object management system using mobile phones, so called
ubiquitous gateways, as the infrastructure components mediating
between object sensors and global network server infrastructure.
As part of our system architecture and implementation, we
describe query services which allow to set up mobile phones for
local object tracking as well as to configure the behaviour of the
global network to implement a number of use cases concerned
with the monitoring of physical objects.

I. INTRODUCTION

The attractiveness of a system for monitoring and locating
personal objects has been frequently mentioned in literature.
However, most existing systems which can be used for this
purpose require an expensive infrastructure for sensing objects,
for example, using Radio Frequency Identification (RFID)
readers installed in the environment [1]–[3].

In this paper, we describe a prototype system for object
monitoring and localization using mobile phones. Mobile
phones combine two useful features: They are omnipresent
in environments in which users live and are at the same time
inter-connected by a homogeneous world-wide infrastructure.
Given that important objects can be augmented with an
electronic tag such that they can be detected when brought
into the vicinity of a mobile phone, many new applications
become possible revolving around managing, monitoring, or
locating one’s everyday items.

Various hardware could be employed for object tagging and
sensing. For example, RFID tags are expected to be attached
to various consumer products in the near future as they may
realize significant cost savings in stock and supply chain
management. In particular, passive RFID technology based
on the Ultra-High Frequency (UHF) band [4], or similarly,
active tags with a small autonomous power source [5], are
expected to provide reading ranges of a couple of meters
even with small reader modules. If improved variants of
today’s handheld UHF readers were integrated into mobile
phones, a ubiquitous system could be deployed within few
years using the short innovation cycle established through

mobile phone sales. In addition to RFID, other upcoming
radio communication systems, some even compatible with the
phone’s Bluetooth capability, could be used to identify objects
in the phone’s physical proximity in a similar way. If small
inexpensive Bluetooth-discoverable tags [6] can be built (in
fact, our prototype relies on BTnodes [7]) a ubiquitous object
sensing infrastructure is already in place today.

Once object sensing technology can be integrated with mo-
bile phones, various applications can be conceived concerned
with the management and localization of tagged objects.
Therefore, the focus of this paper is to devise a generic service
architecture which allows for rapid implementation of end-user
services concerned with the management of everyday objects.
Further, we describe a demonstrator system which puts the
architectural framework to work. The cornerstone of this ar-
chitecture is the mobile phone which functions as a ubiquitous
gateway mediating between local sensor information and the
global service infrastructure.

We begin by describing the envisioned application use cases
in Section II. After surveying related work in Section III, we
describe the service architecture of our system in Section IV
and, specifically, generic query services that allow configuring
the interplay of system components for each of our use cases
in Section V. We further describe the implementation of the
devised service architecture and the associated demonstrator
application in Section VI. We conclude with a discussion of
future work in Section VII.

II. APPLICATION

In this paper, we will focus on the following four use cases
revolving around the management of everyday items using
mobile phones.
Remember Loss Context: The user can task his or her mobile
device (ubiquitous gateway) to store the context in which
an object left its range. This includes (among others) the
following data: a trace of the user’s location before and after
the loss event, other people present, or other personal objects
carried along when the object was lost. As there will be a
large number of managed objects and users leave items behind
on a regular basis (for example when leaving their home),
we assume that it is unpleasant to issue a notification to the
user each time a registered object goes out of range. Instead,
the recorded data can provide the user with valuable hints
regarding the location of a lost object as it helps recall the



circumstances of the loss. Furthermore, the data can be used
to perform automatic searches for the object (see Find Object
use case).
Find Object: The user can send a query to many remote
ubiquitous gateways (e.g., mobile phones of other users or
ubiquitous gateways installed at lost and found offices) with
the purpose of locating a given object that has been lost
or misplaced. The query service should support queries that
can be installed at remote ubiquitous gateways and trigger
whenever the sought object comes in range of one of the object
sensors.
Delegation: The user can delegate the care of a personal
item from the personal ubiquitous gateway to other ubiquitous
gateways [8], for instance to a hanger in a restaurant that can
be tasked to guard a user’s coat and send an alarm when it is
removed without the user being present.
Lab Gate: A ubiquitous gateway device is installed next to
a university or industry lab that uses an object sensor (such
as an RFID reader) to record which objects leave with whom.
It thereby provides an intuitive and non-intrusive check-in /
check-out management for the equipment used in the lab.

We will use these four use cases to motivate the service
architecture we describe in this paper. While we aim to provide
generic support for the development of applications for the
ubiquitous gateway, the above scenarios will be used as a test
of the presented architecture’s flexibility.

III. RELATED WORK

Various work has argued for the relevance of reminding
about personal objects or locating them. In a related proto-
type [2], RFID readers broadcast readings on carried tagged
objects wirelessly to the passing user’s personal device. The
user is then notified on missing objects based on previously
collected readings. Recently, a system called MAX [1] em-
ployed a wide-area infrastructure of base stations (e.g., in
each room) and so called sub-stations (e.g., furniture) – for
both of which a human readable name is assigned – to
search for objects. Finally, the delegation use case was first
mentioned in a different prototype [8]. Compared to these
approaches, our system allows to set up a wide range of
end-user services related to our application domain, which
includes, but is not limited to, each of the prototypes described
above. Moreover, compared to MAX [1], we do not rely on
a pre-installed object-sensor infrastructure which is organized
in a hierarchical fashion.

In addition, our system includes an implementation of
supporting services centered around messaging, storage, and
support for assembling applications from components. Using
the presented framework, a user or application programmer
can compose storage and messaging services into the com-
munication pattern most suitable for the respective application
scenario. For example, in the lab gate use case, the framework
allows to set up sensors and storage components to proactively
log all object-sensor readings in the user’s database. Alterna-
tively, in the find object use case, the framework allows to set
up the system such that queries are disseminated reactively

whenever an object is to be found. We will describe the query
service in detail in Section V.

Note that the find object use case could also be implemented
by proactively sending all sensor readings (e.g., object X
seen by ubiquitous gateway A) to a centralized service which
would then be used to locate a lost object. In this case our
system would prominently face the challenge of a global
data collection system, such as IrisNet [9] or Hourglass [10].
However, in our application we do not propagate sensor
readings to the network core by default for various reasons.
Firstly, the number of sensor readings (e.g., object X seen by
ubiquitous gateway A) is by far larger than the number of
queries (e.g., looking for a misplaced object) which makes
querying for objects more efficient than propagating every
sensor reading to a central server. Moreover, such aggregation
of data in a centralized database would imply severe issues
with protecting the personal privacy of system users. Last but
not least, it is incompatible with a privacy enhancing feature
of our system: Objects which have previously been associated
with their owner will only be detected by a sensor after this
sensor has received an explicit query for the given object
(containing the owner’s key, see Section IV for details).

Our current implementation of messaging services could
be replaced by various frameworks that can provide message
passing among gateways and to the server back-end [11]–
[13]. However, most of these frameworks do not support the
CLDC configuration of J2ME, which is also the reason why
we could not make use of frameworks supporting component
deployment such as [14]. From the frameworks that do support
CLDC, note that Elvin’s content-based messaging [11] is so far
not beneficial to our application as in all our use cases the des-
tinations of events are either known in advance (e.g., a certain
user that is to be alerted) or provided by an application-specific
service that determines where an object is to be searched.
Analogously, we currently would not benefit from a peer-
to-peer framework such as JXTA [13]. However, both [13]
and [11] could provide a valuable extension for distributing
information in our network at a later stage. Similarly, at
a later stage an integration with the UMTS IP multimedia
subsystem (IMS) [15] may prove valuable. So far, however,
IMS’s prominent features such as session management and
enhanced handling of QoS requirements are not required by
our application.

Finally, the authors of [16] describe a framework for using
the mobile phone as a gateway to access heterogeneous health-
related sensors pre-installed in the user’s enviroment. Com-
pared to [16], we focus on evaluating our architecture by ap-
plying it to heterogeneous use cases of our object management
application. By using this approach, our architecture supports
enhanced functionality, such as the wide-area distribution of
queries and direct interaction between smart phones.

IV. SERVICE ARCHITECTURE

We will first give an overview of the core services of our
architecture and the interplay of our system’s components.
Mobile phones acting as ubiquitous gateways are shown on
the right side of Figure 1. They can sense tagged objects and
their context either directly or through object sensors. Further,



Global Query 

Service

Query Scoping

Service

User 

Agent

User Database

Object

Sensors

Association Registry

InternetInternet

User Location ProfileUser Location Profile

Tagged

Object

Ubiquitous

Gateways

Scope

Providers

Event 

Sources

Ubiq. Gateway 

Query Service

Reports

Fig. 1. Service architecture overview.

they are connected through a global packet-based network
(e.g., a cellular packet network; shown as ’Internet’) with a
centralized server system. This server system hosts the global
query service and the query scoping service, which manage
queries for objects through the mobile phones. The user agent
provides an interface for users triggering a query. This can be
done from any user device including a user’s mobile phone.

Query Services. The use cases of our application deal with
context information provided by various types of sensors.
Examples are the mentioned object sensors, the user’s location,
or various other context information that is required in the
remember loss context use case such as a sensor identifying the
presence of other persons. This variety of sensors motivates the
abstraction of sensor information on the ubiquitous gateway
through what we call basic event sources, which we will
introduce in Section V-A.

Some use cases demand that, once a predefined condition
is detected (e.g., when an object is sensed either in or out of
range), a notification is generated. Such reports, notifications
associated with additional context information, are issued by
the ubiquitous gateway query service that specifies which
conditions should be detected and what information to include
in the report. It is described in detail in Section V-A.

A report is either sent to the local user carrying the
ubiquitous gateway (i.e., the mobile phone), to a remote user
carrying another mobile phone, or to an appropriate service
(such as a storage service) in the infrastructure. The last two
options require the global query service that provides both
event routing and large-scale query dissemination. It is detailed
in Section V-B.

Storage. As discussed, various data in the system need to be
stored for later query. This involves mainly storing past events,
i.e., keeping a log of which object was seen where and when.
The different use cases require storing data both locally on
the ubiquitous gateway (as is the case with remember loss
context) or remotely in a user database provided by the back-
end infrastructure if reliable storage is desired (as is the case
with lab gate). The storage service is detailed in Section VI.

Association. Another core aspect of our application scenarios
is association: The association service keeps track of associa-
tions between users and objects and is used when authorization
decisions must be made. This is the case, for example, when
a user asks the system to perform a wide-area search for

a certain object whose whereabouts should only be visible
to its owner. Second, user to user association enables more
flexible handling of object access rights. Its main purpose
is to maintain groups of users such as families or business
departments in order to be able to grant them collective access
rights to search an object. Third, user to ubiquitous gateway
and user to object sensor association allows maintaining a
set of favorite gateways and sensors that are particularly
relevant to the user. A user may, for example, setup some
ubiquitous gateways and object sensors in places that are of
special interest to him or her. These could be dock gates in
an industrial facility or a remote holiday home.

Location Profile. Further, users may choose to record statistics
on their previous locations using a location profile service.
This allows to send a find object query to locations where
the user spends a large portion of his/her time, assuming that
the objects are likely to be found there. For our purposes,
we extended the concepts found in [17] by optional user
interaction that allows the user to explicitly name locations.

Query Scoping. In the find object use case, the query scoping
service assists the global query service by choosing an ade-
quate subset of ubiquitous gateways which are likely to find
the misplaced object based on application-specific heuristics.
Such heuristics are implemented by means of scope providers
– small adaptors that make use of data stored by other
system services to specify which gateways should be queried.
Specifically, our system includes three such scope providers.
The first is based on the user database storing data on past
object locations. This scope provider returns a list of gateways
that are near locations where the object “was seen” in the past.
A second scope provider based on the association service
returns ubiquitous gateways that belong to users which are
in some way associated with the object owner. Such a search
strategy is useful when the object is used jointly by a group of
colleagues or friends. Finally, a third scope provider returns
ubiquitous gateways at relevant locations as determined by
the location profile service. Note that a wide range of such
search heuristics exists and we only list a small subset here.
In a complementary paper on query scoping [18], we have
described how a more comprehensive query scoping service
could determine the likelihood that a ubiquitous gateway will
find an object by integrating all kinds of history and profile
data known to the system at the time of the query.

The global query service uses the ubiquitous gateway query
interface we describe in Section V-A to install a query at the
selected ubiquitous gateways, on which local storage services,
basic event sources, and an event dispatcher, are used to
implement the ubiquitous gateway query service as detailed in
Section VI. Finally, at the network leaves, ubiquitous gateways
may interface object sensors and, possibly, multi-hop sensor
networks. For the latter, publish/subscribe approaches [19]
could be employed to make the data available on the gateway
in terms of a remote basic event source.

Privacy Considerations. For a system that handles a large
variety of personal user data, protecting the users’ privacy is
of paramount importance. While not the focus of the paper, we
made a few design choices to take privacy needs into account.



The first is that tagged objects can be hidden and remain
visible only to their owner: Users may secure objects after
purchase through the association service. A shared key is
stored in the association registry, granting the owner exclusive
rights to query for the associated object. Specifically, secured
objects will not reply unless the respective object sensor polls
with a packet containing the correct shared key [20]. A find
query initiated by the owner will contain the key for accessing
the object, as we describe in the next section. Further, users,
whose presence may be stored as context in the remember
loss context use case, can similarly choose to hide and only
be visible to the devices of associated users.

Last but not least, the execution platform of services con-
taining sensitive information can be re-configured within the
application. That is, the association registry or the location
profile, could be executed on the ubiquitous gateway device
instead of the server back-end giving users full physical
control of their data. Similarly, the location profile service
which enhances object search functionality can simply not be
deployed for some users. We will describe how our service im-
plementation enables such transparent deployment of services
in Section VI.

V. QUERY SERVICES

The developed query services allow application program-
mers to specify the system’s behaviour, in particular, to
implement each of the use cases highlighted above. In this
section, the interfaces of these query services will be described
in detail.

The queries that an application can submit to our prototype
system consist of two parts: First, a part for the ubiquitous
gateway query service that specifies how an individual ubiq-
uitous gateway shall use its object sensors when processing
the query (e.g., if an object should be sensed using RFID,
Bluetooth, or both). Second, a part for the global query service
that specifies to which ubiquitous gateways a query shall be
distributed, how it should be processed (e.g., time and cost
constraints), and where the resulting events shall be delivered
to.

A. Query Interface of the Ubiquitous Gateway

In this section we describe the query interface that each
gateway exposes to the global query service. Before we can
describe the interface, we need a concept for the context data
that are available at the ubiquitous gateways (besides sensed
objects) on which a query can operate. We call these basic
sources of information basic event sources.
Basic Event Sources. Basic event sources provide a unified
interface for all kinds of context data that are available on
the ubiquitous gateway. They are custom-implemented com-
ponents that are provided by the application developer. Each
event source will generate events of a predetermined type and
can be parameterized with an accuracy level to regulate the
number of events it generates. Example event sources that are
appropriate for our application include:

• A Location event source that provides information about
a ubiquitous gateway’s physical location. In an imple-
mentation that uses an integrated GPS receiver, this event

source could generate an event as soon as the gateway’s
position changes by more than a programmer-specified
amount. In a different implementation this source could
generate an event whenever the GSM cell changes.

• InRange polls for tagged objects in periodic intervals
specified by the programmer and, upon the detection of
objects, generates an event that includes their identifiers.
If secured objects should also be detected, the event
source can incorporate access keys for these objects.

• Adversely, OutOfRange generates an event every time a
specific, possibly secured, tagged object has been out of
range for a given time. This event source is used as a
trigger for remember loss queries.

• The Persons event source generates an event containing
the identifiers of all persons that were detected in a
gateway’s vicinity. Again, the programmer can specify
the frequency with which a scan for persons is performed.

• The LabelReader event source generates events whenever
a context label is detected. Such context labels could be
made available by places of interest (e.g., trains, buses
etc.) that announce their symbolic name by broadcasting
beacons.

It is clear that these examples of basic event sources are
somewhat overlapping. However, as these components are
custom-implemented to best suit a specific application, we
believe that developers will come up with a wide range of
differentiated basic event sources.
Query Formulation. Each query is specified by two param-
eters: The first parameter, is used to define when the query
should produce a result. The programmer can specify this trig-
ger condition by providing a (possibly custom-implemented)
basic event source. The second parameter, defines the report
that a query should generate, which is essentially a list of
basic event sources. Typically, a report will have to include
not just the data currently available from the specified basic
event sources, but also observations prior and subsequent to
the triggering event. In the report definition, we thus annotate
each event source with an interval (a, b) in which the numbers
a and b denote a range of events from a given source to be
included in the report, relative to the time of the triggering
event. Intervals can be time-based, e.g., (−10s, 5s), where the
report would include all events occurring within 10 seconds
before and 5 seconds after the triggering event, or simply event
based: (−3, 3) would include 3 events that occurred prior to
the triggering event and 3 events after the trigger. Event-based
intervals are further annotated with an expiration timeout to
allow for the generation of reports even if too few events arrive
after the trigger. Note that the generated report is itself an
event and thus the query itself is a new event source and can
be treated on the same level as the basic event sources listed
above.

Using such query definitions consisting of a trigger condi-
tion and a corresponding report definition, we formulate the
described use cases as they would be issued at the ubiquitous
gateway interface as shown in Figure 2.

The remember loss context query specification is defined to
use the OutOfRange source (initialized for the specific object)
as a trigger and, as soon as the object goes out of range, to



Query
Spec.

Remember Loss
Context

Find Object Lab Gate

Trigger OutOfRange(obj) InRange(obj) InRange(all)
Report Location

(−120s, 60s)
Location
(−5, 0)

InRange
(−5, 5)

LabelReader
(−2, 0)

Persons
(−5, 5)

Persons (−3, 3)

Fig. 2. Use cases formulated at the ubiquitous gateway query interface.

report the user’s location observed during three minutes around
the trigger event, the user’s friends that were present at that
time (at most 6 events from the persons source that occurred
before or after the trigger), and recently read labels (the last
two). Similar examples are given for the find object and lab
gate cases (we omitted the analogous delegate use case).

The destination of the report and limits on the duration
and the cost of the query are set via the global query service
interface described in the next section.

B. Global Query Service

In order to facilitate the deployment of applications building
upon a large-scale infrastructure as described above, our
framework provides a global query service. It allows de-
velopers to easily formulate queries and pass them to the
infrastructure that will then transparently distribute them both
among the various logical components (middleware services)
and physical devices (ubiquitous gateways). When the global
query service receives a query, it uses a scope provider in order
to relay it to the ubiquitous gateways that are most appropriate
depending on the client application’s needs. It also keeps track
of active queries and removes them when the searched-for
tagged object has been found.

Apart from shielding application developers from the com-
plexity of the underlying service infrastructure, the global
query service serves the purpose of isolating the party initiat-
ing a query from the party receiving it. A mobile network
operator could for example act as a trusted intermediary
between end-users who offer their terminals as sensing devices
on the one hand and others who consume these services on
the other hand. This allows for the effective enforcement of
privacy and accounting policies. The interface also provides
client applications with methods to monitor and control the
costs incurred by their querying activities. It has to be noted
here that the client application for invoking queries can reside
on a user’s mobile phone, which is acting as a ubiquitous
gateway at the same time.

The global query service provides a simple method for
client applications to bootstrap queries. This method returns
a reference to a query object that clients use for subsequent
communication with the global query service. The interfaces
of the global query service and the queries created through it
are shown in listings 1 and 2.
interface GlobalQueryService {
Query createQuery(
in QuerySpecification querySpec,
in ScopeProvider scopeProvider,
in long maxCost,
in long maxEvents,
in long maxTime ) };

Listing 1. Interface of global query service.

The semantics of the arguments passed to createQuery are
defined as follows:

• The querySpec parameter specifies the details of the
query that is to be executed at the ubiquitous gateways,
including instructions on how the different sensors must
be used (see Figure 2 for details).

• The scopeProvider argument is used by client applica-
tions to indicate the search heuristics that are best suited
for the task at hand. An application can either point to an
existing, predefined search scope provider or implement
its custom one.

• Using the maxCost parameter, an application can limit
the costs it is willing to incur during the execution of the
query. As soon as a query has accumulated this cost, it
is automatically terminated by the global query service.
The dimension of costs is not defined. Depending on the
setting the system is deployed to, this value could for
example represent the charges a mobile network operator
imposes on the use of its network or the energy needed
to transmit a query. The maxCost parameter is optional.
If it is not specified, the system will not constrain the
query based on cost considerations.

• By the maxEvents argument, the client application defines
how many events a query can generate at most. As soon
as it has triggered this many events, it is automatically
removed by the global query service. This parameter is
optional. If it is not specified, the query will not be
terminated based on the number of events it generates.

• Finally, maxTime can be used to limit the lifetime (in
seconds) of the query. If the query should not be removed
after a certain time, this argument can be omitted.

interface Query {
addSink(in Sink sink);
removeSink(in Sink sink);
cancel(); };

Listing 2. Interface of query objects.

The events that are generated by a query are routed to sinks
by the wide area infrastructure. A client application can add
sinks to the query by calling the addSink() method.

C. Use Cases

In this section we will illustrate how the global query service
abstraction can be used to formulate the four usage scenarios
of our application.
Remember Loss Context. An application can implement the
remember loss context use case as follows:
query = GlobalQueryService.createQuery(
new QuerySpec(QTYPE_REMEMBER_LOSS_CONTEXT, ...),
new SingleGatewaySP(gatewayInstance),
null, /* maxCost */
null, /* maxEvents */
null /* maxTime */

);
query.addSink(localStorage);

In this example, the client application asks the global query
service to use the single gateway scope provider to direct the
query specification to the ubiquitous gateway referenced by
gatewayInstance. In this case, gatewayInstance corresponds
with the local ubiquitous gateway (i.e., the mobile phone



currently executing the application). The indicated ubiquitous
gateway then builds a query based on the primitives outlined
in Section V-A and executes it locally.

In the remember loss context use case we assume that the
user’s mobile device should permanently monitor the presence
of a tagged object. Therefore the limiting parameters maxCost,
maxEvents and maxTime are omitted. As a second step, the
application attaches the storage service running locally on the
user’s mobile device as an event sink where object loss events
will be recorded.
Find Object. An application can request the global query
service to locate a lost tagged object using the following code
sequence:
query = GlobalQueryService.createQuery(
new QuerySpec(QTYPE_FIND_OBJECT, ...),
new LocationProfileSP(userId),
10, /* maxCost */
5, /* maxEvents */
600 /* maxTime */

);
query.addSink(this);

In the find object use case, the client is unable to indicate
the ubiquitous gateways the query specification should be
distributed to. It therefore creates a location profile scope
provider, which is then used by the global query service in
order to obtain a number of gateways that are most likely
to yield a search result. The list of promising gateways is
calculated based on the user’s historical locations as recorded
in the location profile (as described in Section IV). It can be
expanded gradually when a query does not yield a result after
some time. Alternatively, the search algorithm we described in
complementary work [18] could be used as a scope provider.

In this example, the application requests the global query
service to terminate the query as soon as the accrued costs
reach or exceed 10 units, 5 object events have been delivered,
or the query has been running for 600 seconds. Finally, the
client application makes sure that it receives the object events
generated by the query so that it can inform the user when the
object is found.
Lab Gate. The lab gate use case is similar to the remember
loss context use case in that it is installed at a single, user-
specified ubiquitous gateway. The following instructions are
used:
query = GlobalQueryService.createQuery(
new QuerySpec(QTYPE_LAB_GATE, ...),
new SingleGatewaySP(labDoorGateway),
null, /* maxCost */
null, /* maxEvents */
null /* maxTime */

);
query.addSink(myDatabase);
query.addSink(GLOBAL_MARKET);

In this use case, the global query service will send the
query specification to a specific ubiquitous gateway installed
at the lab’s door. The query specification used in this example
causes the lab gate to repeatedly look for tagged objects in its
environment and return them organized in groups of objects
that were observed at the same time. The query should not be
limited by costs, number of resulting events, or time.

The application registers two event sinks in this example.
First, the user’s personal database that records the location

history of his or her tagged objects. Second, a general event
channel that we call global market. Any user participating
in our system can subscribe to the global market in order to
retrieve all events related to his or her tagged objects that are
seen on the global market. Other users can decide to make their
infrastructure available to whoever is interested by pushing
events to the global market. The idea behind the global market
is that owners of ubiquitous gateways might want to share with
the community those events that are of no value for themselves
and that are merely by-products.

VI. PROTOTYPE IMPLEMENTATION

The query interfaces described in the previous section can
be used to setup each of our application use cases both at the
global query service and the involved ubiquitous gateways. In
this section, we give the details of our prototype implementa-
tion of the described service framework and associated query
services. We describe the implementation of our system [21]
from the bottom up.

A. Tagged Objects, Object Sensors, and Event Sources

In our prototype, we use BTnodes [7], tiny devices equipped
with a processor, a battery unit and a Bluetooth radio, as
tagged objects. Further, Nokia’s Series 60 phones function
both as ubiquitous gateways and as object sensors. We cur-
rently use Bluetooth discovery to implement object and person
sensing, that is, the InRange and OutOfRange and Person
event sources. We prototypically implement secure objects
by optionally disabling Bluetooth discovery on BTnodes after
association – from which point on, objects can only be
detected when a connection attempt is made with the correct
Bluetooth MAC address. When users specify that their pres-
ence should only be detected by associated users, their MAC
addresses are similarly exchanged in the association process.
The Location event source is implemented by reading the
current cell id of the mobile phone. Additionally, the user can
attach symbolic names (such as ’office’) to each location, using
our implementation of the location profile [17]. An additional
event source may read data from a Bluetooth GPS device.

B. Component Management

Some of the services we described in Section IV require
optional installation based on user preferences and/or device
capabilities. For example, some users might prefer to turn off
the location profile service due to privacy implications. Fur-
ther, heterogeneous ubiquitous gateway devices might require
different configurations of basic event source components to
be deployed, based on the physical sensors they have available.

In order to provide a flexible means for application deploy-
ment to the back-end server and to heterogeneous ubiquitous
gateways, we implemented every service in our system as an
independent, replaceable and re-loadable component according
to the OSGi specification [22]. This way, we can reduce
the number of configurations that need to be developed and
maintained for heterogeneous user devices. In addition, this
allows to load only the required components to ubiquitous
gateways and the server.



As supporting OSGi containers, we run an existing frame-
work [23] on the server, and further provide our own light-
weight implementation of the core parts of the OSGi frame-
work on the J2ME platform. On the server, a pool of worker
threads is provided that allow to handle many client requests
concurrently.

C. Communication Channels

We can distinguish two different types of communication
for inter- and intra-node communication, respectively.

Messaging. A simple point-to-point messaging system is used
to realize communication between ubiquitous gateways and
between a ubiquitous gateway and a centralized service on
the server. For the former, we provide an SMS/MMS-based
channel together with a second, Bluetooth-based channel, if
the two devices are within ad hoc communication range. TCP
sockets are used to communicate with the server.

Event Routing on the Ubiquitous Gateway. In order to
distribute various sensor data to different services running
on the ubiquitous gateway, we implemented an event router
component, which enables an event source to send events to
any number of event sinks, this way implementing the one-to-
many communication pattern. In order to receive a specific
type of event, a sink may indicate the desired type when
subscribing. As event sources are threads which can be started
and stopped any time, the router will make sure that sources
are only running when at least one sink is subscribed to it.
This helps save resources which are limited on the mobile
phone.

D. Serialization and Storage

As discussed, we need a mechanism to persistently store
data, for instance association data on users and objects or
a potentially great number of events generated by queries.
Depending on the global query service setup described in
Section V-B, data can be stored using the Record Management
System (RMS) of the local gateway or, more reliably, in a
persistent data store in the back-end database.

For remote storage, we serialize (byte-encode) data records
and send them to the server storage component, which updates
the corresponding records in its database. As none of the
software we reviewed supports the CLDC configuration of
J2ME [24], we decided to implement a small serialization
framework on our own. Conceptually similar to the Serial-
ization API of J2SE [25], we offer a common serialization
interface that is implemented by every class representing
data to be stored. Instances of such classes can hence be
serialized into a byte stream, the database, or RMS using
the corresponding serializer. In order to save bandwidth while
communicating with the gateways, we decided to serialize the
objects into a compressed XML format.

By combining these storage services with the messaging
system described above, we are able to offer a remote storage
service. Consequently, storing gateway data in the server
database becomes as easy as storing it in the local RMS.

E. Query Processing

As discussed in Section V, there are two components
involved in processing a query. Each ubiquitous gateway runs a
query processor that handles queries to an individual gateway.
Further, the global query service is used to create a query and
to determine the ubiquitous gateway the query must be sent
to.

Query Processor. This component is used to validate, install,
and remove queries on the ubiquitous gateway device and
to execute multiple queries in parallel. Additionally, it is in
charge of monitoring the queries’ lifetime and thus stops and
removes queries when necessary.

In a first step, the query processor will validate the query.
This check includes the query’s lifetime, user access rights and
the availability of the required event sources. Consequently,
the query will not be started should any of these checks fail.

Once a query is started by the query processor, it will
subscribe to the basic event sources it requires at the local
event router. Further the query stores a history of events
relevant to this query using the local storage service. For
example, given the find object query specified in Section V-A,
the latest five events from the GPS receiver will be stored.
Once the specified trigger event source, in this example the
InRange source, has fired, the query will un-subscribe the
trigger and generate a report as soon as all required events
– that is, contents of the specified report definition – have
arrived (a timeout is used to protect the system from waiting
forever). In the find object example, no sources need to be
monitored after the trigger, therefore the query immediately
generates a report. Finally, the query will re-subscribe to its
trigger event source to return to its original state.

Global Query Service. If the target gateway is known, as for
example in the delegation use case, the global query service
forwards the query to the specified target gateway.

If the target gateway is not explicitly stated, the global
query service will invoke the given scope provider and query
ubiquitous gateways in the order they are returned by the
scope provider. In our current implementation, we use a scope
provider based on association that returns a list of associated
gateways (for example, office colleagues).

F. User Interface

(a) Menu (b) Objects (c) Find (d) Report

Fig. 3. Screenshots of the prototype running on a Nokia 6630 phone.

To assess the feasibility of our query services in everyday
use, we implemented a demonstrator application for J2ME
mobile phones that would use the services described above.
Additionally, this application allows to manage the user’s
object and friend associations as described in Section IV.



To create an initial association with a tagged object, the
user selects an object currently in his or her vicinity from the
list of objects in range. A similar procedure is used to create
a friend association (not shown). If desired, this information
can be propagated to the server back-end using the remote
storage service described above. The user can edit such stored
associations using the interface as presented in Figure 3(b).

Context menus attached to items in the list of objects allow
to initiate a query to the infrastructure. For example, to find
an associated object that has been lost, as described in the
find object use case, the user would select the corresponding
command as shown in Figure 3(c). This command causes a
query to be sent to the global query service at the server back-
end. As discussed, the global query service uses the association
scope provider to distribute the query to office colleagues.
When any of the ubiquitous gateways to which the query
has been sent discovers the lost object, it will send a report
message to the originating gateway. The user then receives a
notification as shown in Figure 3(d).

VII. CONCLUSION

In this paper, we presented the design and implementation
of a comprehensive service architecture that supports the
development of various novel applications which draw on the
ubiquitous availability of mobile phones. Core concept is the
use of mobile phones as ubiquitous gateways that connect a
ubiquitous sensing infrastructure with back-end services that
provide global storage and query dissemination facilities.

The developed query service exports a pair of complemen-
tary interfaces which can be used to specify local and global
behaviour, respectively. This two-layer abstraction allows for
easy setup of the components involved in such large scale
applications. By means of a demonstrator system for managing
personal objects which includes various use cases ranging from
finding misplaced personal objects to automated check in and
check out of shared hardware in a university lab, we aimed
to demonstrate the applicability and flexibility of the interface
and of the underlying service architecture.

While our implementation of query processing services
constitutes a pragmatic approach related to existing work [26],
[27], its abstraction level which lies close to the application’s
logic allows for a lightweight and efficient implementation
of the query service while at the same time remains generic
enough to be applicable to a wide range of applications.
Moreover, the global query service provides coordination
functionality for wide-area queries (such as cost control and
query dissemination), which is a specific challenge in our
setting. Finally, our interfaces allow fine-grained tuning of the
incurred communication overhead by means of an intermittent
layer of storage services on the ubiquitous gateway device that
can cache generated reports for later query.

Current work includes an experimental evaluation on the
feasibility of searching objects using user-carried object sensor
devices. Further, we will use our prototype to collect actual
user data such as user associations and position traces which
will allow to evaluate query scoping based on real user
behaviour.

REFERENCES

[1] K. K. Yap, V. Srinivasan, and M. Motani, “MAX: Human-centric
search of the physical world,” in Proceedings of the 3rd International
Conference on Embedded Networked Sensor Systems (SENSYS’05), San
Diego, CA, USA, November 2005.

[2] G. Borriello, W. Brunette, M. Hall, C. Hartung, and C. Tangney,
“Reminding about tagged objects using passive RFIDs,” in Proceedings
of the 6th International Conference on Ubiquitous Computing (Ubi-
Comp’04), Nottingham, England, September 2004.

[3] R. Want, K. Fishkin, A. Gujar, and B. Harrison, “Bridging Physical and
Virtual Worlds with Electronic Tags,” in ACM Conference on Human
Factors in Computing Systems (CHI’99), Pittsburgh, USA, May 1999.

[4] B. Bacheldor, “RFID vendors unite to promote UHF for items,” RFID
Journal, June 2006.

[5] RF Code, Inc., “MantisTM active RFID tags 433 MHz data sheet,” www.
rfcode.com/data sheets/433 mantis tags.pdf, 2006.

[6] Wibree Technology, www.wibree.com, October 2006.
[7] J. Beutel, O. Kasten, F. Mattern, K. Römer, L. Thiele, and F. Siege-

mund, “Prototyping Sensor Network Applications with BTnodes,” in
Proceedings of the 1st European Workshop on Wireless Sensor Networks
(EWSN’04), Berlin, Germany, January 2004.

[8] H. Shimizu, O. Hanzawa, K. Kanehana, H. Saito, N. Thepvilojanapong,
K. Sezaki, and Y. Tobe, “Association management between everyday
objects and personal devices for passengers in urban areas,” Pervasive
2005, Demonstration, Munich, Germany, May 2005.

[9] P. B. Gibbons, B. Karp, Y. Ke, S. Nath, and S. Seshan, “IrisNet: An
architecture for a worldwide sensor web,” IEEE Pervasive Computing,
vol. 2, no. 4, 2003.

[10] P. Pietzuch, J. Ledlie, J. Shneidman, M. Roussopoulos, M. Welsh, and
M. Seltzer, “Network-aware operator placement for stream-processing
systems,” in Proceedings of the 22nd International Conference on Data
Engineering (ICDE’06), Atlanta, GA, USA, April 2006.

[11] B. Segall and D. Arnold, “Elvin has left the building: A publish/sub-
scribe notification service with quenching,” in Proceedings of the Aus-
tralian UNIX and Open Systems User Group Conference (AUUG’97),
Brisbane, Australia, September 1997.

[12] M. Caporuscio, A. Carzaniga, and A. L. Wolf, “Design and evaluation
of a support service for mobile, wireless publish/subscribe applications,”
Department of Computer Science, University of Colorado, Tech. Rep.
CU-CS-944-03, Jan 2003.

[13] L. Gong, “Project JXTA: A technology overview,” 2002.
[14] A. Frei and G. Alonso, “A dynamic lightweight platform for ad-

hoc infrastructures,” in Proceedings of the 3rd IEEE International
Conference on Pervasive Computing and Communications (PerCom),
Kauai Island, Hawaii, USA, March 2005.

[15] J. F. Huber, “Mobile next-generation networks,” IEEE Multimedia,
vol. 11, no. 1, pp. 72–83, January 2004.

[16] D. Trossen and D. Pavel, “Building a ubiquitous platform for remote
sensing using smartphones,” in Proceedings of the 2nd Annual Inter-
national Conference on Mobile and Ubiquitous Systems: Networks and
Services (MobiQuitous’05), July 2005, pp. 485–489.

[17] K. Laasonen, M. Raento, and H. Toivonen., “Adaptive on-device location
recognition,” in Proceedings of the 2nd International Conference on
Pervasive Computing (Pervasive’04), Vienna, Austria, April 2004.

[18] C. Frank, C. Roduner, C. Noda, and W. Kellerer, “Query scoping for the
Sensor Internet,” in Proceedings of the IEEE International Conference
on Pervasive Services (ICPS’04), Lyon, France, June 2006.

[19] J. Heidemann, F. Silva, C. Intanagonwiwat, R. Govindan, D. Estrin, and
D. Ganesan, “Building efficient wireless sensor networks with low-level
naming,” Operating Systems Review, vol. 35, no. 5, pp. 146–159, 2003.

[20] S. J. Engberg, M. B. Harning, and C. D. Jensen, “Zero-knowledge device
authentication: Privacy & security enhanced RFID preserving business
value and consumer convenience,” in Proceedings of the 2nd Annual
Conference on Privacy, Security and Trust (PST’04), October 2004.

[21] P. Bolliger, “Query services for the sensor internet,” Master’s thesis,
ETH Zurich, January 2006.

[22] P. Kriens et al., “OSGi Service Platform Specification, Release 3,” The
Open Services Gateway Initiative, Tech. Rep., 2003.

[23] Knofplerfish OSGi, “http://www.knopflerfish.org,” April 2006.
[24] Sun Microsystems Inc., “Connected limited device configuration speci-

fication 1.1,” March 2003.
[25] “Java object serialization specification,” Sun Microsystems Inc., 8 2001.
[26] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong, “The design

of an acquisitional query processor for sensor networks,” in Proceedings
of the 2003 ACM SIGMOD International Conference on Management
of Data, San Diego, CA, USA, 2003, pp. 491–502.

[27] S. Li, S. H. Son, and J. A. Stankovic, “Event Detection Services Using
Data Service Middleware in Distributed Sensor Networks,” in Proceed-
ings of the 2nd International Workshop on Information Processing in
Sensor Networks (IPSN’03), Palo Alto, CA, USA, April 2003.

www.rfcode.com/data_sheets/433_mantis_tags.pdf
www.rfcode.com/data_sheets/433_mantis_tags.pdf
www.wibree.com
http://www.knopflerfish.org

	Introduction
	Application
	Related Work
	Service Architecture
	Query Services
	Query Interface of the Ubiquitous Gateway
	Global Query Service
	Use Cases

	Prototype Implementation
	Tagged Objects, Object Sensors, and Event Sources
	Component Management
	Communication Channels
	Serialization and Storage
	Query Processing
	User Interface

	Conclusion
	References

