Poster Abstract: Compiler-Assisted Thread
Abstractions for Resource-Constrained Systems

Alexander Bernauer
Institute for Pervasive Computing
ETH Zurich
bernauer @inf.ethz.ch

Abstract—Major operating systems for wireless sensor net-
works (WSN) enforce an event-based programming paradigm for
efficiency reasons. However, practice has shown that the resulting
code complexity leads to problems during development, deploy-
ment, and operations. Although thread-based programming is
known to solve these problems, the scarce resources of common
WSN devices make it non-trivial to actually support it.

As opposed to existing runtime-based thread libraries, our goal
is to explore the potential of compiler-assisted thread abstractions
by introducing a comprehensive and platform-agnostic system of
compiler and debugger which supports cooperative threads with
minor restrictions.

The compiler allows to write thread-based programs that
are automatically translated to equivalent event-based programs,
while the debugger provides source-level debugging of the initial
program, thus sustaining the thread abstraction.

Our preliminary results and ongoing evaluations suggest that
the resource-wise overhead of the abstraction is moderate and
can be below the overhead of runtime-based solutions. We also
demonstrate that the transformation is platform-agnostic by
supporting both Contiki and TinyOS.

I. INTRODUCTION

Major WSN operating systems (OS) such as TinyOS [4]
and Contiki [2] account for the scarce resources of WSN
devices by offering asynchronous application programming in-
terfaces (API) and by imposing the event-based programming
paradigm to its applications.

Although efficient, practice has shown that the implications
of this paradigm often pose significant problems to developers.
This is in particular true for the WSN domain, as deployment
environments tend to differ strongly from lab environments
and debugging of deployed networks is usually very time-
and energy-consuming. Therefore, mistakes resulting from the
inherent complexity of event-based programming tend to be
very expensive to cope with.

In order to eliminate this source of mistakes altogether,
researchers have investigated the question how to support
thread-based programming on WSN devices despite the scarce
resources. The prevalent system in the Contiki world is Pro-
tothreads [3] where a set of C preprocessor macros enable
the syntactical illusion of threads and synchronous operations.
In contrast, the most wide-spread approaches for TinyOS are
runtime-based thread libraries such as TOSThreads [5], but
with TinyVT [6] there is also a translation-based solution.
There, a dedicated compiler generates a component’s imple-

Kay Romer
Institute of Computer Engineering
Universitidt zu Liibeck
roemer @iti.uni-luebeck.de

mentation from sequential nesC code which is enriched with
special await statements where the control flow blocks until
the occurrence of an event.

As opposed to runtime-based solutions, compilers can ex-
ploit application-specific properties and apply optimizations.
This is why we hypothesize that compiler-assisted thread
abstractions can be more resource-efficient than thread li-
braries. Additionally, we argue that the provided thread ab-
straction should also be sustained during debugging. None
of the existing thread abstractions achieve this, though, and
existing compiler-assisted thread abstractions have significant
limitations concerning the supported thread semantics.

Thus, our goal is to take the next step of compiler-assisted
thread abstractions. We aim to verify our claims by presenting
a platform-agnostic source-to-source translation scheme. This
scheme translates ISO/IEC 9899 (C99) applications using
cooperative threads with synchronous OS APIs into C99
applications which use events with asynchronous OS APIs
while preserving the operational semantics.

In preliminary work we have evaluated an initial translation
scheme using a worst-case application [1]. Given the fact that
we have considerably improved the translation scheme since
then and there are still many opportunities for optimizations
that we are going to exploit, we are confident that the
efficiency of generated applications can be very close to the
efficiency of hand-written applications. In the following we
sketch this new translation scheme.

II. TRANSFORMATION

The input to the compiler is an OS API specification consist-
ing of declarations of synchronous functions, and thread-based
application code that uses this API (T-code). In this context,
every synchronous API function is a so-called critical function
and every function that calls a critical function, i.e. contains
a critical call, is also critical. Non-critical functions are not
altered by the transformation.

Concerning the critical functions, there are some limitations
to the supported thread-semantics due to the fact that compila-
tion is restricted to decidable problems. Thus, it is forbidden a)
for critical functions to be recursive, b) to call critical functions
via function pointers, and c¢) to perform pointer arithmetics
that escapes the memory location of an object. Additionally,
the number of threads is a compile-time constant.



The input OS API is translated to an asynchronous API
and the T-code is translated to an equivalent event-based
application that uses this API (E-code). To actually execute
E-code, it is necessary to provide a platform abstraction layer
(PAL) that implements the E-code API by using the existing
API of the employed OS to trigger the desired operations and
register the corresponding callbacks.

Both T-code and E-code are non-deterministic programs.
We thus define an E-code to be equivalent to a T-code if and
only if every possible execution of the E-code has the same
observable behavior as at least one possible execution of the
T-code. Hereby, the observable behavior of a program is the
sequence of all API calls including all input parameters. Note
that not including the exact timing of API calls imposes no
additional restrictions, as cooperative threads are not viable
for timing-critical applications anyway [5].

The transformation is sound and complete regarding the
equivalence of T-code and E-code, because translating the
control flow preserves the sequence of language statements
while translating the data flow preserves their individual effect.
We achieve this by the following means:

Concerning the data flow, for every critical function, a
C structure that we call T-frame is generated. It stores the
function’s local variables, its parameters, its return value when
appropriate, the caller’s continuation and a union of all T-
frames of its callees. For every thread starting function, i.e.
a critical function without callers, its T-frame is instantiated
once which constitutes the T-stack of this thread. By design,
a T-stack simulates the runtime stack of a T-code thread if it
would be actually executed. Thus, the translation can replace
all read and write accesses to local variables with read and
write accesses to T-stack variables. Furthermore, T-stacks can
help managing the control flow as follows.

For every thread starting function, a so-called thread exe-
cution function is generated that comprises the inlined bodies
of all critical - but not blocking - functions that are directly
or indirectly invoked by the thread starting function. Every
call to a critical function is then rewritten to the following
sequence: First, the function parameters are written to the T-
stack. Then, the continuation, which is the address of the label!
preceding the first statement after the call, is written to the T-
stack. Last, the control flow jumps to the label that precedes
the callee’s function body. Similarly, returning from a critical
function results to writing the function result to the T-stack and
jumping to the continuation as stored on the T-stack. Then, the
caller can retrieve the result of the function call from the T-
stack and continue its computation.

Invoking blocking functions also involves writing the func-
tion parameters and the continuation to the T-stack. However,
the next step is to trigger the desired operation by calling the
PAL’s implementation of the blocking function while passing
the pointer to its T-frame. As soon as the operation is finished,
the PAL’s obligation is to invoke the thread execution function

IComputed gotos is a GNU extension which can easily be recreated by
jump tables if standard compliance is important.

and pass it the continuation information as previously saved
on the T-stack. Then the thread execution function can jump to
the continuation, fetch the operation’s results from the T-stack
and continue its computation.

As already mentioned, compilers can exploit application-
specific optimizations. For example, if a critical function is
only called once in the whole program, the caller’s contin-
uation can be hard-coded into the E-code instead of being
memorized. Similar optimizations exist for read-only function
parameters and automatic variables that are not read after a
critical call and thus can stay on the E-code stack.

In either case, the compiler can create a log of all applied
transformations which can be used by a T-code debugger to
map locations and variables between T-code and E-code. By
using a conventional C debugger that monitors the E-code, the
T-code debugger can thus provide the well-known concepts of
source-level debugging for T-code applications.

IIT. OUTLOOK AND CONCLUSIONS

In order to evaluate the efficiency of our approach, we are
planning to implement various WSN applications on top of
both Contiki and TinyOS. One variant of each application will
use the native event-based OS API and one will use our com-
piler prototype. Given such applications, we will measure their
resource consumption using both static tools and simulators.
The interesting metrics are a) the size of the binary, i.e., the
ROM consumption, b) the RAM consumption, ¢) the number
of CPU cycles required for one iteration of each recurring
application task, and d) the total energy consumption.

Overall, we have shown how compiler-assisted thread ab-
straction can support almost complete thread semantics in
a platform-agnostic manner. Furthermore, we have explained
why we expect them to be both more efficient than runtime-
based solutions and almost as efficient as hand-written event-
based applications.

REFERENCES

[1] Alexander Bernauer, Kay RoOmer, Silvia Santini, and Junyan Ma.
Threads2Events: An Automatic Code Generation Approach. In Proceed-
ings of the 6th Workshop on Hot Topics in Embedded Networked Sensors,
2010.

[2] Adam Dunkels, Bjorn Gronvall, and Thiemo Voigt. Contiki - A
Lightweight and Flexible Operating System for Tiny Networked Sensors.
In Proceedings of the 29th Annual IEEE International Conference on
Local Computer Networks, pages 455462, 2004.

[3] Adam Dunkels, Oliver Schmidt, Thiemo Voigt, and Muneeb Ali.
Protothreads: Simplifying Event-Driven Programming of Memory-
Constrained Embedded Systems. In Proceedings of the 4th ACM
Conference on Embedded Networked Sensor Systems, pages 29-42, 2006.

[4] Jason Hill, Robert Szewczyk, Alec Woo, Seth Hollar, David Culler, and
Kristofer Pister. System architecture directions for networked sensors.
SIGPLAN Not., 35(11):93-104, 2000.

[5] Kevin Klues, Chieh-Jan Mike Liang, Jeongyeup Paek, Razvan Musaloiu-
E, Philip Levis, Andreas Terzis, and Ramesh Govindan. TOSThreads:
thread-safe and non-invasive preemption in TinyOS. In SenSys '09:
Proceedings of the 7th ACM Conference on Embedded Networked Sensor
Systems, pages 127-140, 2009.

[6] Janos Sallai, Miklés Maréti, and Akos Lédeczi. A concurrency abstraction
for reliable sensor network applications. In Proceedings of the 12th Mon-
terey conference on Reliable systems on unreliable networked platforms,
pages 143-160, 2007.



