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1 Introduction

Major motes operating systems like TinyOS or Contiki [1, 2] rely on an event-driven
programming paradigm. While the use of events allows for limiting memory usage on
resource-constrained motes, it may also hamper the development and debugging of ap-
plications, especially as their complexity increases [3]. Several authors also investigated
the possibility of introducing threads to mote programming [4–6]. However, the pro-
posed solutions all induce runtime overhead which is inherent to the thread paradigm.
In contrast, protothreads [3] combine the benefits of both paradigms by providing thread
semantics to the programmer while using events at runtime. This is achieved by an au-
tomatic code generation step performed by the C preprocessor. However, while using
the C preprocessor guarantees portability across C compilers, it also introduces some
limitations. For instance, certain C language constructs such as switch statements
may not be used and values of local variables are not retained across context switches
[3]. Furthermore, thread functions are not reentrant, blocking calls may only occur in
the top-level thread functions, and debugging is performed in the generated code.

To overcome these limitations, we propose to extend the protothreads abstraction
by providing cooperative threads with blocking I/O, reentrant functions, and arbitrary
nesting of function calls. This is achieved by a comprehensive compiler which translates
thread-based code into efficient event-based code. In order to guarantee the efficiency
of the generated code there are still some limitations, though. First, the exact number
of threads must be known at compile time. Second, recursive functions must not invoke
blocking functions. And third, function pointers must not be used to invoke functions
that directly or indirectly invoke blocking functions. We argue, though, that these limi-
tations do not severely affect programming of motes as these constructs are rarely used.
Furthermore, the compiler can reliably detect any violations of those restrictions.

2 Our contributions

The main contributions of this work are a platform-independent compiler, which trans-
lates thread-based C code (TC) into efficient C code for any event-based runtime envi-
ronment (EC), a proof of correctness of the transformation, measurements of efficiency
which can be used to compare the generated code with hand-written code, and tech-
niques to enable debugging of TC code.



The main challenges related to the transformation of TC into EC code stem from
the fact that a call to a blocking function such as read or sleep must be rewritten
into triggering the operation and registering the continuation, which is executed by the
runtime environment upon completion of a blocking operation. Every function which
potentially calls a blocking function, either directly or indirectly, is affected by the trans-
formation. We denominate such functions critical functions and a critical call is a call
of a critical function.

The transformation of a critical call into a corresponding split-phase operation has
two major implications. First, automatic variables in critical functions that are set before
the critical call and read afterwards must be preserved. Second, the code following a
critical call must be callable. Preserving the state of automatic variables can be achieved
by conflating them in a function-specific state structure and by generating appropriate
code to access them. If, according to static code analysis, the function is potentially
executed by multiple threads at the same time, then there must exist one instance of
the structure for each involved thread. Furthermore, a mapping from the current thread
ID to the index of the corresponding state structure must be performed. This approach
requires to statically allocate the memory for the structure at compile time, even if at
runtime a function might actually never be executed by multiple threads. However, since
at compile time it is undecidable whether concurrent execution will occur at runtime,
the memory for the worst case must be available anyway.

The code surrounding a critical call is split into two separate functions, the second
being a callable continuation. The presence of control flow statements induces further
splits. In general, additional split points are dictated by jumps and labels of the corre-
sponding GOTO program while jumps are replaced with function calls. The return code
of a critical function must know which function it must call in order to continue execu-
tion properly. This information is simply added to the function-specific state structure
and is set by the caller. In the end, whenever a blocking call occurs, the stack contents of
the imaginary TC program is stored in the state structures of the EC code. And as recur-
sion of critical functions is forbidden this is always possible. Figure 1 shows an example
of the above-described transformation of TC code (left) into EC code (right). Note, that
there is no TC runtime and thus no TC implementations of blocking functions. Instead,
there must be proper EC implementations available, which depend on the underlying
runtime environment and form the platform abstraction layer of the compiler.

The generated EC code does not induce any overhead for context switching and dy-
namic memory allocation and is therefore as efficient as hand-written event-based code.
Furthermore, it requires only one stack, which is used by the event dispatcher thread and
the amount of allocated static memory is the same that would be needed by equivalent
hand-written code. Finally, in many cases optimizations are possible. For example, if
there is no reentrance there is no need to map from thread ID to state array index and to
lookup for the continuation because both results can be determined statically.

By enabling TC-based programming, we allow wireless sensor networks applica-
tion developers to overcome one of the major drawbacks of event-based programming:
the need for explicitly dealing with the scattering of the flow of control over multiple
event handlers, the preservation of states across context switches, and the maintenance
of continuation information. Our TC compiler provides for automatically generated,



efficient EC code that does not induce additional runtime costs. Furthermore, our com-
piler can support debuggers operating at the TC level by including proper debugging
information in the generated code. In summary, TC programmers can easily develop
applications without considering the event-based nature of the underlying system and
without worrying about efficiency.

void f_() {
stmts_1;
while(condition) {

int x =  ...;
stmts_2;
c();
stmts_3;
... = x;

}
stmts_4;

}

typedef struct {
int x;
void (*ret)(int);

} t_state_f;

static t_state_f state_f[THREADS_f];

void f_1(tid) {
stmts_1;
f_2(tid);

}

void f_2(tid) {
if (condition) {

state_f[map_f(tid)].x = ...;
stmts_2;
state_c[map_c(tid)].ret = f_3;
c_1(tid);

} else { f_4(tid); }
}

void f_3(tid) {
stmts_3;
... = state_f[map_f(tid)].x;
f_2(tid);

}

void f_4(tid) {
stmts_4;
state_f[map_f(tid)].ret(tid);

}
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Fig. 1. TC to EC transformation. stmts stands for an arbitrary number of statements, c is a
critical function, tid is the current thread ID, THREADS f is the number of threads which use
f in common, map f and map c map from thread ID to array index. f and c are assumed to be
used more than once in the TC program.
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