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Abstract—Many efforts are currently going towards network-
ing smart things from the physical world (e.g. RFID, wireless
sensor and actuator networks, embedded devices) on a larger
scale. Rather than exposing real-world data and functionality
through proprietary and tightly-coupled systems we propose to
make them an integral part of the Web. As a result, smart things
become easier to build upon. Popular Web languages (e.g. HTML,
URI, JavaScript, PHP) can be used to build applications involving
smart things and users can leverage well-known Web mechanisms
(e.g. browsing, searching, bookmarking, caching, linking) to
interact and share things. In this paper, we begin by describing
a Web of Things architecture and best-practices rooted on the
RESTful principles that contributed to the popular success,
scalability, and evolvability of the traditional Web. We then
discuss several prototypes implemented using these principles to
connect environmental sensor nodes, energy monitoring systems
and RFID tagged objects to the World Wide Web. We finally
show how Web-enabled things can be used in lightweight ad-hoc
applications called “physical mashups”.

I. INTRODUCTION

A central concern in the area of pervasive computing has
been the integration of digital artifacts with the physical world.
In particular, the “Internet of Things” has essentially explored
the development of applications built upon various networked
physical objects [1]. Inhabitants of the physical world such as
sensor and actuator networks, embedded devices, appliances
and everyday digitally enhanced objects (subsequently called
smart things) are still mostly disconnected from the Web and
form a myriad of small incompatible islands. Increasingly,
embedded devices and consumer electronics as for example
Chumby, Gumstix, or Nabaztag get Internet (and sometimes
Web) connectivity but cannot be controlled and monitored
without using dedicated software and proprietary interfaces.
As a consequence, smart things are hard to integrate into
composite applications, which severely hinders the realization
of a flexible ecosystem of devices that can be reused serendip-
itously.

The Internet of Things has mainly focused on establish-
ing connectivity in a variety of challenging and constrained
networking environments, and the next logical objective is
to build on top of network connectivity by focusing on the
application layer. In the Web of Things (WoT), we would like
to consider smart things as being first-class citizens of the
Web. This way Web tools and techniques (e.g. browsers, search
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engines, caching systems), languages (e.g, HTML, JavaScript,
mashups) and interaction techniques (e.g. browsing, linking,
bookmarking) can be directly applied to the real world. We
position the Web of Things as a refinement of the Internet
of Things by integrating smart things not only to the Internet
(i.e. to the network), but also to the Web (i.e. to the application
layer).

To achieve this goal, we propose to reuse and adapt patterns
commonly used for the Web, and introduce in the paper
an architecture for the Web of Things. First, by embedding
Web servers [2], [3], [4] on smart things and applying the
REST architectural style [5], [6] to the physical world (see
Section III-A). The essence of REST is to focus on creating
loosely coupled services on the Web so that they can be
easily reused [7]. REST is actually core to the Web and
uses URIs for encapsulating and identifying services on the
Web. In its Web implementation it also uses HTTP as a true
application protocol. It finally decouples services from their
presentation and provides mechanisms for clients to select the
best possible formats. This makes REST an ideal candidate to
build an “universal” API (Application Programming Interface)
for smart things.

As the “client-pull” interaction model of HTTP does not
fully match the needs of event-driven applications, we further
suggest the use of syndication techniques such as Atom to
enable sensor push interactions (see Section III-B).

As a consequence of the proposed architecture, smart things
and their functionality get transportable URIs that one can
exchange, reference on Web sites and bookmark. Things
are then also linked together enabling discovery simply by
browsing. The interaction with smart things can also almost
entirely happen from the browser, a tool that is ubiquitously
available and that most of the people understand well [8].
Furthermore, smart things can benefit from the mechanisms
that made the Web scalable and successful such as caching,
load-balancing, indexing and searching.

Since some devices cannot connect to the Internet or fully
respect the REST architectural style, we finally propose the use
of Smart Gateways [9] which are embedded Web servers that
abstract communication and services of non Web-enabled de-
vices behind a RESTful API (see Section IV). In Section V we
illustrate the WoT architecture by means of several prototypes.



We begin by applying these to sensors, actuators and tagged
objects and show how simple Web applications (e.g. AJAX,
JavaScript, HTML) can be built upon these smart things. We
then show that a Web of Things makes it possible for tech-
savvy end-users to create physical mashups involving smart
objects just as they would create Web mashups.

II. RELATED WORK

Linking the Web and physical objects is not a new idea.
Early approaches started by attaching physical tokens (such
as barcodes) to objects to direct the user to pages on the
Web containing information about the objects [10], [11]. These
pages were first served by static Web Servers on mainframes,
then by early gateway system that enabled low-power devices
to be part of wider networks [12]. The key idea of these work
was to provide a virtual counterpart of the physical objects on
the Web. URIs to Web pages were scanned by users e.g. using
mobile devices and directed them to online representation of
real things (e.g. containing status of appliances on HTML
pages or user manuals). With advances in computing technol-
ogy, tiny Web servers could be embedded in most devices [3],
[2]. The Cooltown project pioneered this area of the physical
Web by associating pages and URIs to people, places and
things [8] and implementing scenarios where this information
could by physically discovered by scanning infrared tags in
the environment. We would like to go a step further and to
propose an architecture to truly make smart things part of the
Web so that they proactively serve their functionality as re-
usable Web services.

A number of projects proposed solutions to expose the
functionality of smart things in order to build applications
upon. Among them, JINI, UPnP, DNLA, etc. JXTA [13] is
a set of open protocols for allowing devices to collaborate in
a peer-to-peer fashion, and was eventually the first attempt
to bridge the physical objects world over the Internet. The
advent of WS-* Web Services (SOAP, WSDL, etc.) led to a
number of work towards deploying them on embedded devices
and sensor networks [14], [15]. While helping towards the
integration to enterprise applications, these solutions are often
too heavy for devices with limited capabilities [4], do not
directly expose the smart things’ functionality on the Web as
RESTHful architectures do and are not truly loosely-coupled [7].
Several systems for integration of sensor systems with the
Internet have been proposed — for example SenseWeb [16]
and Pachube — which offer a platform for people to share their
sensory readings using Web services to transmit data onto a
central server. Unlike the Web of Things, these approaches are
based on a centralized repository and devices are considered
as passive actors only able to push data.

One of the first mentions of a Web of Things composed of
RESTful smart things comes from [17]. However it focuses
mainly on the discovery of devices and not on how to provide
their functionality on the Web. Closer to our work, [18] and in
particular [19] consider the use of REST-like architectures for
sensor networks. We build upon these approaches and propose
a systematic implementation of the RESTful constraints (see

Section III-A) and extend the model with the use of standard
Web syndication such as using Atom. Furthermore we do not
focus on the lower sensors level but explore the applications
from a Web view-point. We propose a unified view of the Web
of today and tomorrow’s Web of Things in applications called
“physical mashups”.

III. WEB OF THINGS ARCHITECTURE

Realization of the Web of Things requires to extend the
existing Web so that real-world objects and embedded devices
can blend seamlessly into it. Instead of using the Web proto-
cols solely as a transport protocol — as done when using WS-*
Web services for instance — we would like to make devices
an integral part of the Web by using HTTP as an application
layer protocol.

The main contribution of the “Web of Things” approach is
to take the next logical step beyond the network connectivity
established by activities often summarized under the “Internet
of Things” label. Many activities in the “Internet of Things”
area put their emphasis on establishing Internet-level connec-
tivity (often in terms of TCP and/or UDP), and then propose
interaction protocols layered on top of this basic connectivity.
Often, these protocols follow RPC-style designs, introducing
their own functions and thus requiring any users of these
protocols to specifically support the functions provided by
these platforms. We propose to follow a different architectural
style and to use REST’s idea of a uniform interface, so that the
interactions with smart things can be built around universally
supported methods [7].

We do not make the assumption that devices must offer
RESTful interfaces directly provided by each individual thing.
In a number of cases it makes a lot of sense to shield the im-
plementation of a specific platform in terms of implementation
specifics, and to expose the resources made available by that
platform through a RESTful API. The interactions behind that
RESTful interface are invisible and often will include highly
specialized protocols for the specific implementation scenario.
Because REST has the concept of intermediaries as a core part
of the architectural style, such a design can easily be achieved
by modeling the RESTful service using intermediaries. By
using either proxies or reverse proxies (see Section IV) it is
furthermore possible to establish such an intermediary from
the client or from the server side, effectively introducing a
robust pattern of how non-RESTful services can be wrapped
in RESTful abstractions.

Before we move on to discuss the Web of Things in greater
detail, we will first briefly review REST’s main principles, and
how they apply to the vision presented in this paper.

A. A Resource Oriented Architecture for Things

REST is an architectural style, which means that it is
not a specific set of technologies. For this paper, we focus
on the specific technologies that implement the Web as a
RESTful system, and we propose how these can be applied
to the area of pervasive computing. The central idea of REST
revolves around the notion of resource as any component of an



application that needs to be used or addressed. Resources can
include physical objects (e.g. a temperature sensors) abstract
concepts such as collections of objects, but also dynamic and
transient concepts such as server-side state or transactions.
REST can be described in five constraints:

C1 Resource Identification: the Web relies on Uniform Re-
source Identifiers (URI) to identify resources, thus links
to resources (C4) can be established using a well-known
identification scheme.

C2 Uniform Interface: Resources should be available through
a uniform interface with well-defined interaction seman-
tics, as is Hypertext Transfer Protocol (HTTP). HTTP has
a very small set of methods with different semantics (safe,
idempotent, and others), which allows interactions to be
effectively optimized. The vast majority of Web-facing
applications offer RESTful interfaces, while the back-
ends are implemented using different interaction models
(such as database systems), and the same approach can
be employed for the Web of Things.

C3 Self-Describing Messages: Agreed-upon resource repre-
sentation formats make it much easier for a decentralized
system of clients and servers to interact without the
need for individual negotiations. On the Web, media
type support in HTTP and the Hypertext Markup Lan-
guage (HTML) allow peers to cooperate without indi-
vidual agreements. For machine-oriented services, media
types such as the Extensible Markup Language (XML)
and JavaScript Object Notation (JSON) have gained
widespread support across services and client platforms.
JSON is a lightweight alternative to XML that is widely
used in Web 2.0 applications and directly parsable to
Javascript objects.

C4 Hypermedia Driving Application State: Clients of REST-
ful services are supposed to follow links they find in
resources to interact with services. This allows clients to
“explore” a service without the need for dedicated dis-
covery formats, and it allows clients to use standardized
identifiers (C1) and a well-defined media type discovery
process (C3) for their exploration of services. This con-
straint must be backed by resource representations (C3)
having well-defined ways in which they expose links that
can be followed.

C5 Stateless Interactions: This requires requests from clients
to be self-contained, in the sense that all information to
serve the request must be part of the request. HTTP
implements this constraint because it has no concept
beyond the request/response interaction pattern; there
is no concept of HTTP sessions or transactions. It is
important to point out that there might very well be state
involved in an interaction, either in the form of state
information embedded in the request (HTTP cookies),
or in the form of server-side state that is linked from
within the request’s content (C3). Even though these two
patterns introduce state into the service, the interaction
itself is completely self-contained (does not depend on

the context for interpretation) and thus is stateless.

In HTTP, the uniform interface constraint (C2) has four
main operations, GET, PUT, POST, and DELETE. In a Web
of Things these map rather naturally: GET is used to retrieve
the representation of a resource, e.g. the current consumption
of an electricity sensor. PUT is used to update the state of
an existing resource or to create a resource by providing its
identifier. For example it can be used to turn a led on or off.
DELETE is used to remove a resource. It can for example be
used to delete a threshold on a sensor or to shutdown a device.
Finally, POST creates a new resource, e.g. creates a new feed
used to trace the location of a tagged object.

Tying together C2 and C3, HTTP also supports content
negotiation, allowing both clients and servers to communicate
about the requested and provided representations for any given
resource. Since content negotiation is built into the uniform
interface, clients and servers have agreed-upon ways in which
they can exchange information about available resource rep-
resentations, and the negotiation allows clients and servers
to choose the representation that is the best fit for a given
scenario.

REST is still an active research topic and more complex
interactions patterns (such as RESTful transactions) are not yet
established as specifications or design patterns. It is important
to keep in mind, though, that the design goals for the Web as
a RESTful system and REST’s advantages for a decentralized
and massive-scale service system align very well with the
field of pervasive computing: millions to billions of available
resources and loosely coupled clients, with potentially millions
of concurrent interactions with one service provider, and
a large share of long-lasting interactions. Based on these
observations, we conclude that RESTful architectures for the
Web of Things are the most effective solution, because they
scale much better than RPC-based architectures.

The most important step in any RESTful design is the first
step of identifying all resources that should be made available,
and for a Web of Things, the smart things themselves would
naturally be prime candidates for this. However, sometimes
these things do not exist by themselves, but within certain
scenarios or groups through which they are accessed and
managed, which maps very well onto the syndication concept
described in the following section.

B. Syndicating Things

One common theme among many scenarios with smart
things is that there are collections of things, based on certain
properties or just on the application scenario. With Atom, the
Web has a standardized and RESTful model for interacting
with collections, and the Atom Publishing Protocol (AtomPub)
extends Atom’s read-only interactions with methods for write
access to collections. Because Atom is RESTful, interactions
with Atom feeds can be based on simple GET operations which
can then be cached. More advanced scenarios can be based on
feeds supporting query features, but this is an active area of
research and there are not yet any standards [20]. Atom also
makes it possible to support asynchronous scenarios in a WoT



where clients can monitor smart things by subscribing to feeds
and pulling a feed server instead of by directly pulling data
from each smart thing.

However, many pervasive scenarios must deal with real-
time information. This is particularly useful when one needs
to combine stored or streaming data from various sources to
detect spatial or temporal patterns, as is the case in many
environment monitoring applications. HTTP was designed
as a client-server architecture, where clients can explicitly
request (pull) data and receive it as a response. This makes
REST well suited for controlling smart things over HTTP,
but this client-initiated interaction models seems unsuited for
event-based and streaming systems, where data must be sent
asynchronously to the clients as soon as it is produced.

For scenarios requiring direct push, various research efforts
are currently active. One is a model called Comet (also
called HTTP streaming or server push) [21] which is mostly
based on long-lasting HTTP interactions and tries to solve the
problem purely based on existing infrastructure. An alternative
approach is PubSubHubbub, which starts with feeds, and then
adds a layered infrastructure of nodes which are forwarding
notifications and accept subscribers. On a different level are
HTMLS5’s Server-Sent Events [22], which provide hooks to re-
ceive push notifications in regular browser-based applications.

While it is clear that a Web of Things needs more devel-
opments and standards in the areas we have described, the
developments of recent years and the foreseeable future of
HTMLS and richer interaction models on the Web make us
optimistic that most of the problems of missing building blocks
will be overcome in a relatively short period of time.

IV. CONNECTING THINGS TO THE INTERNET

To make smart things part of the Web, two solutions are
possible: direct Web connectivity on the devices or through a
proxy. Previous work has shown that embedded Web servers
on resource constrained devices is feasible [3], [4], and it is
likely that in the near future most embedded platforms will
have native support for TCP/IP connectivity (in particular with
6LowPAN [2]), therefore a Web server on each device is a
reasonable assumption. This approach is sometimes desirable
because there is no need to translate HTTP requests from Web
clients into the appropriate protocol for the different devices,
thus devices can be directly integrated and make their RESTful
APIs directly accessible on the Web, as shown on the right part
of Figure 1.

However, when an on-board HTTP server is not possible
or not desirable, Web integration takes place using a reverse
proxy that bridges devices that do not talk IP with the Web.
We call such as proxy a Smart Gateway to encapsulate the
fact that it is a network component that does more than only
data forwarding. A Smart Gateway is actually a Web server
that abstracts behind a RESTful API the actual communication
between devices and the gateway (e.g.. Bluetooth or Zigbee)
through the use of dedicated drivers. From the Web clients’
perspective, the actual Web-enabling process is fully transpar-
ent, as interactions are HTTP in both cases.

Web

=

Fig. 1. Web and Internet Integration with Smart Gateways (left), direct
integration (right).

As an example, consider a request to a sensor node coming
from the Web trough the RESTful API. The gateway maps
this request to a request into the proprietary API of the node
and transmits it using the communication protocol understood
by the sensor node. A Smart Gateway can support several
types of devices through a driver architecture as shown on
Figure 1 where the gateway supports three types of devices
and their corresponding communication protocols. Ideally,
gateways must have a small memory footprint to be integrated
into embedded computers already present in buildings such as
Wireless routers or Network Attached Storage (NAS) devices.

Aside from connecting limited devices to the Web, a
Smart Gateway can also provide more complex functions
to devices such as orchestrate the composition of several
low-level services from disparate devices into higher-level
services available through the RESTful API. For example,
if an embedded device measures the energy consumption of
appliances, the Smart Gateway could provide a service that
returns the total energy consumption as a sum of the data
collected by all the devices connected to the gateway.

V. EVALUATION BY PROTOTYPING

In this section we present several prototypes we have
developed to illustrate our proposed architecture for the Web
of Things.

A. A Smart Gateway for Smart Meters

With this prototype we start by illustrating the application of
the WoT architecture for monitoring and controlling the energy
consumption of households. We used intelligent power sockets
called Plogg that can measure the electricity consumption of
the devices plugged into them. Each Plogg is also a wireless
sensor node that communicates over Bluetooth or Zigbee.
However, the integration interface offered by the Ploggs is
proprietary, which makes the development of the applications
using Ploggs rather tedious, and does not allow for easy Web
integration.

The Web-oriented architecture we have implemented using
the Ploggs is based on four main layers as shown in Figure 2.
The first layer is composed of appliances we want to monitor
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Fig. 2. Devices extended attached to the Ploggs power outlets communicating
with a Smart Gateway offering the Ploggs functionalities as RESTful services.
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and control through the system. In the second layer, each of
these appliances is then plugged to a Plogg sensor node. In
the third layer, the Ploggs are discovered and managed by a
Smart Gateway as described before. The final layer is the Web
user interface.

The Ploggs Smart Gateway is a C++ embedded component
whose role is to automatically find all the Ploggs in the
environment and make them available as Web resources. The
Gateway first discovers the Ploggs on a regular basis by
scanning the environment for Bluetooth devices. The next step
is to make their functionality available as RESTful resources.
A small footprint Web server (Mongoose') is used to enable
access to the Ploggs’ functionalities over the Web. This is done
by mapping URIs to native requests of the Plogg Bluetooth
APL

Besides discovering the Ploggs and mapping their function-
alities to URLs, the gateway has two other important features.
First, it offers local aggregates of device-level services. For ex-
ample, the gateway offers a service that returns the combined
electricity load of all the Ploggs connected to it at any given
time. The second feature is that the gateway can represent
resources in various formats. By default an (X)HTML page
with links to the resources is returned to ensure browsability.
Using this representation the user can literally “navigate”
through the structure of smart meters to identify the one she
wants to use and directly test them by clicking on links (e.g. for
the HTTP GET method) or filling forms (e.g. for the POST
method). The gateway can also represent resources as JSON
results to ease the integration with other Web applications.

To illustrate how we apply the HTTP standards and REST,
let us briefly describe an example of interaction between a
client application (e.g. written in AJAX) and the Ploggs’
RESTful Smart Gateway. First, the client contacts the root
URI of the application:

http://code.google.com/p/mongoose

GET /EnergieVisible/SmartMeters/RoomLamp
[...] HTTP/1.x 200 OK

Content-Type: application/json

{

"deviceName": "RoomLamp",
"currentWatts": 60.52,
"Kwh": 40.3,
"maxWattage": 80.56
"links":

[{"aggregate": ./all"y},
{"load": "../load"},
{"status": "/status"}]

| G

Fig. 3. A sample HTTP response sent back to the client. The packet contains
the usual HTTP headers (including the HTTP verb or method: GET), as well
as a JSON document as the body part.

http://.../EnergieVisible/SmartMeters/

with the GET method. The client gets back as a result the
list of all the SmartMeters connected to the gateway. The
selection of the suitable format for the client is achieved during
a content negotiation phase (C2, C3), specified in HTTP. Thus,
alongside with the GET request, the client sets the Accept
field of the HTTP request to a weighted list of media types it
can understand, for example to: application/Jjson; g=1,
application/xml; g=0.5. The server will try to serve
the best possible format and will describe it in the
Content-Type of the HTTP response.

Since the required format is a key parameter, we suggest
supporting content negotiation directly in the URI as well
in order to make it more natural for everyday users, directly
testable and bookmarkable. Thus, our gateway supports
requests such as
http://.../EnergieVisible/SmartMeters. json
as well. As a second step, the client selects the device it
wants to interact with identified by a URI (C1):
http://.../EnergieVisible/SmartMeters/
RoomLamp. json
By issuing a GET request on this resource it gets back its
JSON representation as shown on Figure 3. In the response
message of Figure 3 the client finds energy consumption data
(e.g. current consumption, global consumption, etc.) as well
as hyperlinks to related resources. Using these links the client
can discover other related “services”, fulfilling the constraint
(C4) and enabling the discovery of resources.

As an example by contacting:
http://.../RoomLamp/status
with the standard OPTIONS method the client gets back the
methods allowed on the status resource (e.g. Allow: GET,
HEAD, POST, PUT). By sending the PUT method to this
URI alongside with the payload status=off, the lamp is
turned off.

The Web-enabling of the Ploggs allows to build fully Web-
based energy monitoring applications, but also enables simple
but very useful interactions such as bookmarking connected



appliances and being able to turn on/off or monitor them from
any device with a Web browser.

B. Direct Access and Syndication of Wireless Sensor Networks

The Sun SPOT platform? is a wireless sensor network
particularly suited for rapid prototyping of WSNs (Wireless
Sensor Networks) applications. The RESTful architecture we
designed and implemented [4] for the Sun SPOTs is composed
of two main parts: an embedded Web server on each node, and
a (reverse) proxy server to forward the HTTP requests from
the Web to the SPOTs, that is from the IP network of the Web
to the IEEE 802.15.4 network of the Sun Spots and vice-versa.

Each Sun SPOT has a few sensors (light, temperature,
accelerometer, etc.), actuators (digital outputs, LEDs, etc.), and
a number of internal components (radio, battery). The role of
the embedded Web server is to make the sensors, actuators
and internal components available as REST resources. Unlike
for the Ploggs’ implementation, we wanted the Sun SPOT
nodes to directly provide a RESTful interface, without a
Smart Gateway that translates REST requests to proprietary
protocols, thus we implemented an embedded HTTP server
directly on each sensor node, making it an independent and
autonomous Web of Things device. As for the Ploggs, requests
for services are formulated using URIs (C1). For instance,
typing a URL such as
http://.../spotl/sensors/light
in a browser, requests the resource “light” of the resource
“sensor” of “spotl” with the verb GET which illustrates that
the natural structure of embedded devices maps quite well to
resources.

The limited computing and storage capabilities of the nodes
have two consequences. First they only serve a JSON represen-
tation of their resources. Secondly to avoid too large workload
on the node we implemented a syndication mechanism for
the sensors. As mentioned before, this also better fits the
interaction model of sensor networks. Thus, the nodes can be
controlled (e.g. turning LEDs on, enabling the digital outputs,
etc.) using synchronous HTTP calls (client pull) but can also
be monitored by subscribing to feeds (node push). More
concretely, the subscription to a feed is done by creating new
“rules” on sensor resources, e.g. by POSTing a threshold and
the URI of an Atom(Pub) server to
http://.../spotl/sensors/light/rules
Every time the threshold is met, the sensor node pushes a
JSON message to the given Atom server using AtomPub. This
allows for thousands of clients to monitor a single sensor
by outsourcing the processing onto an intermediate, powerful
server.

C. Web-Enabled Everyday Things

The Electronic Product Code (EPC) Network [23] is a set
of standards established by industrial key players towards a
uniform platform for tracking and discovering RFID tagged
objects and goods. This network offers, amongst other com-
ponents, a standardized server-side EPCIS (EPC Information
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Fig. 4.  Architecture of the RESTful EPCIS based on the Jersey RESTful

framework and deployed on top of the Fosstrak EPCIS.

Service) which is in charge of managing and offering access
to track and trace RFID events. Implementations of the EPCIS
(such as Fosstrak [23]) offer a standard query and capture API
through WS-* Web Services.

Ideally, in the Web of Things not only embedded devices,
but also everyday things should be available. Thus, we decided
to use the presented concepts to turn the EPCIS into a WoT
Smart Gateway providing access to a global network of tagged
everyday objects. This also helps to better grasp the benefits
of a seamless Web integration (based on REST) versus using
the Web as a transport (as done for WS-* Web Services).

As a client, the EPCIS offers three core features. First it
offers an interface to query for RFID events. As mentioned
before, this interface is accessible through a WS-* Web
Service. While this enables to create clients using several
languages supporting Web services, it makes it impossible
to directly query for RFID events using Web languages such
as JavaScript or HTML. More importantly it does not allow
for exploring the EPCIS using a Web browser, searching for
tagged objects or exchanging links pointing to traces of tagged
objects. Thus, we implemented a RESTful translation of the
EPCIS WS-* interface.

As shown on Figure 4, the RESTful EPCIS is a software
module based on Jersey>. Jersey is a software framework for
building RESTful applications. It is especially interesting since
it complies with the JAX-RS (JSR 311) standard for building
RESTful Web services. Clients of the RESTful EPCIS such
as browsers or Web applications can query for tagged objects
directly using REST and its uniform HTTP interface (C1, C2).
Requests are then translated into WS-* calls on the standard
EPCIS interface. This allows for the RESTful EPCIS to serve
data provided by any implementation of the EPCIS standard.
In our case we use Fosstrak*, an open source implementation
of the standard.

The first benefit of the RESTful EPCIS is that every RFID
event, reader, tagged-object or location is turned into a Web
resource and gets a globally resolvable URI which uniquely
identifies it and can be used to retrieve various representations
(C1). Thus EPCIS queries are transformed into compositions
of these identifiers and can be directly executed in the browser
(C5), sent by email or bookmarked. As an example, a factory

3http://jersey.dev. java.net
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manager who wants to know what tagged objects enter his
factory can bookmark a URI like:
http://.../epcis/rest/location/urn:
company: factoryl/reader/urn:company:
entrance:1

Furthermore these URIs are linked together (C4) in order to
reflect the relationships of the physical world. This makes the
RESTful EPCIS directly browsable (C4). Indeed, in addition
to the XML representation of tagged objects offered by the
standard it also provides (X)HTML and JSON representations
(C3). With the HTML representation, end-users can literally
browse tagged things and their traces simply by following
hyperlinks (C4) as they would browse the Web of documents.
For example, a location offers links to co-located RFID
readers.

A standard EPCIS also offers an interface to subscribe
to events. Through a WS-* operation, clients can send a
query along with an endpoint (i.e. a URI) and subscribe for
updates. Every time the result of the query changes, an XML
packet containing the new results is sent to the endpoint.
While this mechanism is practical, it requires for clients to
run a server that listens to the endpoint and thus cannot
be used by average users or cannot be directly integrated
to a Web browser. To improve this, the RESTful EPCIS
offers a RESTful subscription interface over HTTP (C2) and
serves query updates through AtomPub as shown on Figure
4. This way end-users can formulate queries by browsing the
hyperlinked EPCIS and obtain the updated results represented
as Atom feeds which browsers can understand and directly
subscribe to (C3). As an example a product manager could
create a feed in order to be automatically notified in his
browser whenever one of his product is ready to be shipped,
he could then use the URI of the feed in order to send it to
his most important customers for them to follow the goods’
progress as well. A simple but very useful interaction which
would require a dedicated client to be developed and installed
by each customer in the case of the WS-* based EPCIS.

D. Physical Mashups

By implementing the suggested architecture for the Ploggs,
the Sun SPOTs and the EPC Network, we enable the seamless
integration of these physical things into the Web, and enable
a new range of applications based on this unified view of the
Web. We consider these applications as “physical mashups”
where Web 2.0 technologies and patterns can be applied to
easily build applications (i.e. a Web page making use of several
other Web resources to create a new application). We describe
two concrete prototypes of physical mashups.

1) Web Dashboards: In this first example we have created
a mashup to answer an increasingly important need for house-
holds to understand their energy consumption and to be able
to remotely monitor and control it.

The idea of the “Energie Visible™ project is to offer a Web
dashboard that enables people to control and experiment with

5 A video of the project is available on http://tiny.cc/xh50C

the energy consumption of their appliances. The dashboard
is shown on the upper part of Figure 2 and offers six real-
time and interactive graphs. The four graphs on the right side
provide detailed information about the current consumption of
all the appliances in the vicinity of the gateways.

Thanks to the Ploggs Web integration, the dashboard can
be implemented using any Web scripting language. In this
particular case it is built as a Google Web Toolkit (GWT)®
application which is a robust platform for building Web
mashups and offers a large number of easily customizable
widgets. To dynamically draw the graphs according to the
current energy consumption, the application only needs to
issue an HTTP GET request to the gateway
http://.../EnergieVisible/SmartMeters/all.
json
on a regular basis. It then feeds the resulting JSON document
to the corresponding graphs widgets which can directly parse
JSON.

The “Energie Visible” prototype (Web UI and Smart Gate-
ways) was deployed at the headquarters of a private foundation
working on sustainability’” and has now been running for
8 consecutive months. The aim of the project was to help
visitors and members to better understand how much each
device consumes in operation and in standby. The Ploggs are
used to monitor the energy consumption of various devices
such as a fridge, a kettle, several printers, a file-server and
computers and screens. A large display in the office enables
people passing by to experiment with the energy consumption
of the devices. The staff can also use the system by browsing
to the Web UI on their desktop computer.

2) A Physical Mashup Editor: Tech-savvy users can create
Web mashups using a “mashup-editor” such as Microsoft
Popfly or Yahoo Pipes. These editors usually provide visual
components representing Web sites and operations (add, filter)
that the user only need to connect together to create a
new application. We wanted to apply the same principles to
allow users to create physical mashups without requiring any
programming skills.

Our implementation is based on the Clickscript project®.
A Firefox plugin written on top of the Dojo AJAX library
and allowing people to create Web mashups by connecting
resources (Web sites) and operations (greater than, if..then,
loops, etc.) building blocks together. Since it is written in
JavaScript, Clickscript cannot use resources based on WS-
* Web Services or low-level proprietary service protocols.
However it can easily access RESTful services available on
the Web. Thus, it is very straightforward to create Clickscript
building blocks (or widgets) based on Web of Things devices
and similarly straightforward for non computer scientist users
to create their own physical mashups. The mashup shown in
Figure 5 gets the room temperature by GETting the Sun SPOT
temperature resource. If this is smaller than 36 degrees Celsius,

Shttp://code.google.com/webtoolkit/
7Cudrefin 02: http://www.cudrefin02.ch/
Shttp://clickscript.ch
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Fig. 5. Using the Clickscript Mashup Editor to create a physical mashup by
connecting building blocks directly from a browser.

it PUTS status=off to a Plogg which turns off the fan it
is connected to.

VI. DISCUSSIONS AND FUTURE WORK

Thanks to the loose-coupling, simplicity, and scalability of
RESTful architectures, along with the wide availability of
HTTP libraries and clients, RESTful architectures are becom-
ing one of the most practical integration architecture. This
makes it desirable to use Web standards for also interacting
with smart things. Although HTTP introduces a communica-
tion overhead and increases average response latency, it is still
sufficient for many pervasive scenarios where longer delays
do not affect user experience [19], [14]. Previous work [9] has
shown that the performance of using HTTP as a data exchange
protocol is largely sufficient for common pervasive scenarios,
especially when only a few concurrent users are accessing the
same resource simultaneously (200 ms mean response time
with 100 concurrent users on a 1.1 Ghz server running our
Smart Gateway). We have also shown that caching techniques
can significantly improve the performance of concurrent sensor
data reading by using tools used for massively scalable Web
sites [9]. These techniques can be directly applied to Web
devices given that devices have on-board HTTP support [5].

Web 2.0 mashups have significantly lowered the entry
barrier for the development of Web applications, which is
now accessible to non-programmers. As demonstrated by the
success of the Web, the development of a set of simple,
reusable, and modular software components can greatly facil-
itate the integration of embedded devices of all kinds. It shall
be noted that a resource-oriented approach should not be reli-
giously considered as the miracle solution for every problem.
In particular, scenarios with very specific requirements such
as high performance real-time communication, might benefit
from tightly coupled systems based on traditional RPC-based
approaches. However, for less constrained applications where
ad-hoc interaction and serendipitous re-use are necessary, Web

standards allow any device to speak the same language as other
resources on the Web. This makes much easier the integration
of the real-world with any other Web content, so that physical
things can be bookmarked, browsed, searched for, and used
just like any other Web resource.

Based on our personal experience, the drawbacks of Web
architectures are fairly compensated by the notable simplifi-
cation of the application design, integration, and deployment
processes [4], in particular when comparing RESTful devices
with other systems for embedded devices, such as WS-* Web
services. As an example the Plogg RESTful Gateway and
the Sun SPOTs have been used by external developement
teams who read about our project on our Web site. In the
first case, the idea was to build a mobile energy monitoring
application based on the iPhone and communicating with the
Ploggs. In the second case, the goal was to demonstrate the use
of a browser-based JavaScript Mashup editor with real-world
services. According to interviews we conducted with these
developers, their experience confirmed ours. They enjoyed
using the RESTful smart things, in particular the ease of
use of a Web “API” versus a custom “API”. For the iPhone
application a native API to Bluetooth did not exist at that
time. However, like for almost any platform an HTTP (and
JSON) library was available. One of the developer mentioned
a learning curve for REST but emphasized the fact that it
was still rather simple and that once it was learnt the same
principles could be used to interact with a large number of
services and possibly soon devices. They finally noted the
direct integration to HTML and Web browser as one of the
most prevalent benefits.

As mentioned earlier, HTTP was designed as a client-
server architecture where clients pull data. This interaction
model works fine for control-oriented applications, however,
monitoring-oriented applications are often event-based and
thus smart things should also be able to push data to clients
(rather than being continuously polled). Using syndication
protocols such as Atom and AtomPub improves the model
when monitoring, since devices can publish asynchronously
data using AtomPub on an intermediate server, nevertheless
clients still have to pull data from Atom servers. Overcoming
the client-server architecture is now a core research topic in the
Web community [21]. Standards such as HTMLS5 are also go-
ing towards asynchronous bi-directional communication [22],
therefore it is very relevant to further explore lightweight Web-
based messaging systems.

Another major challenge for a global Web of Things is
search and discovery of smart things. Consider billions of
things connected to the Web either directly or indirectly (e.g.
through Smart Gateways). Discovery by browsing HTML
pages with hyperlinks becomes literally impossible in this
case, hence the idea of searching for smart things. Searching
for things is significantly more complicated than searching
for documents, as things are tightly bound to contextual
information such as location, and are often moving from one
context to the other.

Beyond location, smart things also need to have means to



describe themselves in order to be (automatically) discovered:
how to describe a thing on the Web so that both humans
and machines can understand what services it provides. This
problem is not inherent to smart things neither to the Web but
more generally a problem in describing services. On the Web
and for a Web of Things, languages such as Microformats’
and RDFa will certainly help.

VII. CONCLUSION

In this paper, we suggested that Web technologies are —
contrary to popular belief — a suitable protocol for building
applications on top of services offered by smart things. After
summarizing the core design principles of the modern Web
architecture, we have proposed an architecture for the Web
of Things based on the concepts of REST, syndication for
smart things and Smart Gateways and demonstrated them with
several prototypes.

Thanks to the loose-coupling, simplicity, and scalability
of RESTful architectures and the wide availability of HTTP
libraries and clients, RESTful architectures are becoming one
of the most ubiquitous and lightweight integration architecture.
Because of this, using the Web standards to interact with
smart things seems to be adapted. Although HTTP introduces
a communication overhead and increases average latency, it
is sufficient for many pervasive scenarios where such longer
delays do not affect user experience.

The advantages offered by introducing support for Web
standards directly at the device-level are beneficial for devel-
oping a new generation of networked devices that are much
simpler to program and reuse. Applying the same design
principles that were detrimental to the success of the Web, in
particular openness and simplicity, can significantly leverage
the ubiquity and versatility of the Web as a common ground to
network devices and applications. Furthermore, as most mobile
devices have already Web connectivity and Web browsers,
and most programming languages support HTTP, we tap in
the huge Web developer community as potential application
developers for the Web of Things.
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