Expressing Privacy Policies using Authorization Views

Vibhor Rastogi
RFID Security Group
University of Washington

V. Rastogi, E. Welbourne, N. Khoussainova, T. Kriplean, M. Balazinski, G. Borriello, T. Kohno, D. Suciu

Introduction

- Ubiquitous context-aware computing systems
 - Interaction depends on context information
- RFID Ecosystem
 - An ubiquitous computing system at UW CSE
 - Building wide deployment of RFID readers
 - Users and objects are tagged
 - Information streamed to a central server
 - Users query the central server

RFID Ecosystem

Privacy issue: Access control

- Suppose a user asks a query
 - Is the answer public or private?
 - It depends on multiple factors [Belloti et. al.]
 - Context of the Querier and of the Subject
- Rule-based access control
 - Rules control the accessible information
 - Need to incorporate all the above factors
- Two Problems
 - Hard for users to manage [Lederer et. al.]
 - Context is often inferred and uncertain in nature

Our approach

- Principles for designing access control policy
 - A constrained space of predefined rules
 - Less expressive, more usable
 - Rules intuitive for users to understand
 - Reflect modes of information access in the real world
 - Pertain to concrete events (Eg. Meeting)
- Implementation of access control policy
 - Use Authorization views
 - Allow us to efficiently handle inference & uncertainty

Agenda

- PAC rule for the RFID Ecosystem
- Extensions to PAC
 - Meeting Rule
 - Ownership rule
- General Design principles
- Authorization views
- Conclusion
PAC Rule

- Proposed by [Kriplean 07]

- Provides a default level of privacy
- Enables many applications
 - Personal diary
 - Find information about past events, meetings & locations
 - Object tracker
 - Find the last location where the object was seen

PAC Rule (Contd.)

The meeting scenario

The meeting rule

- For this scenario, Bob enables the meeting rule

 If A & B have Meeting then release B’s location to A

- Bob is the controller
- Bob is also the subject

The ownership scenario

The ownership rule

- For this scenario, Bob enables the ownership rule

 If A carries B’s object then release B carries object to A

- Bob is the controller
- Alice is the subject
Extensions to PAC (contd.)

- Many possible scenarios and rules
 - If context then release information to user
- Rules classified into categories based on context
- Context can be deconstructed [Lederer 03]
 - Location-based (Where)
 - Event-based (When)
 - Role-based (Who)
 - Intention-based (Why)
 - Ownership-based (What)

General Design Principles

- Controller vs. Subject
 - If controller ≠ subject, access rule may be unsafe
 - For ownership rule, Alice’s exact location hidden
- Choosing the right context critical
 - For ownership rule, context = Alice carries book

General Design Principles (contd.)

- Choosing the right context critical
 - For ownership rule, context = Alice carries book

Authorization views

- A database technique for fine grained access control
- For each rule an AV is defined
- A logical table that stores all accessible information
- User query on the original tables
 - Rewritten in terms of authorization views [Duschka]

Using authorization views

- Data stored in the table LocatedAt
 - LocatedAt(User, Location, Time)
- Each rule translated into AV

<table>
<thead>
<tr>
<th>User</th>
<th>Location</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alice</td>
<td>Atrium</td>
<td>5:45 PM</td>
</tr>
<tr>
<td>Bob</td>
<td>Kitchen</td>
<td>5:30 PM</td>
</tr>
</tbody>
</table>

PACView = LocatedAt(U, L, T) ∧ LocatedAt(A, L, T)

Conclusion

- Designing simple & intuitive rules important
- We design ACP for the RFID Ecosystem
 - General design principles for safer & simple access control policies
- Authorization views
 - Simple and Flexible implementation