
LEXP: Preserving User Privacy and Certifying
the Location Information

Ken Nakanishi1, Jin Nakazawa2, and Hideyuki Tokuda13

1 Graduate School of Media and Governance, Keio University
2 Keio Research Institute at SFC

3 Faculty of Environment Information, Keio University
{ken, jin, hxt}@ht.sfc.keio.ac.jp

Abstract. We propose Location information EXchange Protocol (LEXP)
as a protocol for location-aware applications using a tracking system.
This protocol is designed for preserving user privacy, and certifying users
location information. In LEXP, object-detection entities are separated
from location-aware applications, and users can disclose their location
information based on their intention. LEXP guarantees users to keep
anonymity, and guarantees applications that a user cannot forge his lo-
cation information. LEXP realizes these requirements by applying ‘chain
of confidence’ model and extending one-time password architecture.

1 Introduction

Many kinds of location sensing technologies already exist, and more are under devel-
opment. Some, tracking systems such as radio frequency IDs (RFIDs) and the Active
Badge[15] system, detect the objects’ presence in a certain region. Other, positioning
systems such as the Global Positioning System and Cricket[12], allow an object to
compute its location by itself.

Under the tracking systems, an identifier is attached to each object, and readers
detect the identifiers inside their sensing area. In ubiquitous computing environments,
identifiers can be attached to our PDAs and cellular phones, and many readers will
pervasively exist in public settings such as shopping malls, and museums[13]. Location-
aware services in such environments recommend our favorite apparel shop nearby in
a shopping mall, describe the artist that painted the painting we are looking at in a
museum, and provide some other information depending on our location. However, we
are afraid that these services collude against us to share the track of our movement
behind our back since we cannot basically trust these services and have no control over
them. Assuming that, applications using a tracking system create significant privacy
risks. Therefore, protecting personal privacy is going to be a prime concern for the
deployment of location-aware applications[9, 6, 1].

While we do not trust location-aware applications, these applications might not
trust us either. That is, they doubt that our location information describes our actual
location. Several location-aware applications decide users’ privileges based on their
location[11]. For instance, a supermarket publishes discount coupons only to customers
inside the store, and a family permits a visitor to operate networked home appliances
while he is inside the house. Therefore, these applications need to certify users’ location

2

information to protect themselves from being damaged by malicious users’ false location
information. While many works address the protection of user privacy, comparatively
few consider the validity of location information since they basically treat users not to
be suspected but to be protected on their assumption.

To cope with both of these problems, we have designed a protocol for location-aware
applications using a tracking system, called Location information EXchange Protocol
(LEXP). LEXP is designed to preserve user privacy, and certify users’ location in-
formation by applying ‘chain of confidence’ model and extending one-time password
architecture. The rest of this paper is configured as follows. In section 2, we discuss
design considerations. We explain the chain of confidence model and LEXP architec-
ture in section 3. We present a security analysis of the protocol and social roles and
responsibilities of the constituents in section 4. We describe related works and compare
those with LEXP in section 5, and conclude in section 6.

2 Design Considerations

In this paper, we mainly address the RFID system as a prototype of tracking systems,
and assume an environment in which many RFID readers pervasively exist in public
settings and users move around with their mobile device such as PDA and cell phone,
to which an RFID is attached.

In LEXP, entities which detect the objects inside a certain area are separated
from location-aware applications. They send location information to the users inside
their sensing area. The users disclose the information to an application based on their
intention.

The following scenario illustrates example services using LEXP.

When a salesperson, Dom, visits his client’s office to perform a sales pre-
sentation with his laptop to which an RFID is attached, the laptop obtains
location information from a detection entity in the office. When he uses the
networked devices there, such as printers and projectors, he is required to send
his location information to the devices for clarifying that he is in the office.

When he comes back to his office, he wears his neck strap to which an RFID
is attached and starts an application on his desktop computer. The application
obtains location information from detection entities, and spontaneously sends
the information to an employee tracking service. The service can be aware of
Dom’s movement while the application is running.

After work, he transfers his past location information from his laptop and
desktop to his PDA which an RFID is attached to. He takes a side trip with
his PDA, which obtains location information from detection entities in public
settings. A diary service on his PDA can save the record of today’s movement.

Based on this scenario, let us discuss design requirements of LEXP.

Anonymity of Location Information If location information contains an identi-
fier associated with users, malicious services can create histories of users’ movement
by gathering their location information. To prevent this situation, location infor-
mation in LEXP should not contain any identifier associated with users.

Validity of Location Information If users can forge their location information,
they might conspire to obtain some privileges to invoke them maliciously. In our
scenario, Dom can cause serious damages to his client’s office by using printers

3

maliciously from outside and interrupting office work (he can keep anonymity even
if he sends fake location information). LEXP, thus, should guarantee applications
that users cannot forge their location information.

Reusability of Location Information Users might send the same location infor-
mation to different services, which confirm the validity of the information. In our
scenario, Dom sent his location information to the employee tracking service. Then,
he also sent the information to the diary service that refers to his past location
information. LEXP, thus, should allow users to reuse their location information.

Independency of Location Information Frequently, a user owns several devices,
which different RFIDs are attached to, and picks up the suitable device to carry
among them. In this case, users might want to gather their location information
distributed to these devices. In our scenario, Dom gathered his location information
from his laptop and desktop into his PDA. LEXP, thus, should offer a format, which
allows users to transfer their location information among their devices.

3 Architecture

Figure 1 shows the constituents of LEXP. A detector is a detection entity, connected to
an RFID-reader. A client, corresponding to an RFID, is a user-side computing device.
A service provider runs a location-aware application. The resolver is the entity which
manages a mapping table between clients’ RFID and IP address.

Clients send their address to the resolver every time the address has changed (ad-
dress notification). When detectors detect an RFID inside their sensing area, they
request the resolver to resolve the client’s address that corresponds to the RFID (ad-
dress resolution), and send a notification to the address that a ticket is available. Then,
the client can obtain the ticket, which is a presence evidence at the detector’s sensing
area (ticket publication). When clients are requested a ticket by a service provider, they
decide whether they consume the ticket based on user’s intention or a formulated pol-
icy. After service providers obtain a ticket, they request the detector, which published
the ticket, to verify it (ticket verification).

address

ticket ticket

address

Clients

Detectors Service Providers

ticket

verification

The Resolver

Fig. 1. Constituents of LEXP

4

3.1 Chain of Confidence

Clients might receive tickets from unknown detectors, and service providers might need
to verify tickets generated by unknown detectors. Although clients and service providers
want to confirm that the detectors are credible, it is a burden for them to sort out the
credible detectors various amount in advance. To settle this problem, LEXP establishes
a chain of confidence.

On the assumption, every client, detector, and service provider place confidence in
the resolver. The resolver sorts out socially credible detectors (detector registration).
At registration, the resolver registers a secret key for communication with a detector,
and generates the certificate of the detector’s public key.

At address resolution, detectors obtain clients’ address. Clients allow the detectors
to obtain their address since they indirectly trust the detectors, certified by the resolver.
At ticket verification, LEXP applies public key cryptosystem. Service providers receive
the validity of a ticket, which is encrypted by a detector’s private key. Service providers
can trust the validity since the detector’s public key is certified by the resolver.

3.2 LEXP

This section describes the behavior of LEXP. We assume that every detector and
service provider have a static IPv4/v6 address, and every client has an IPv4/v6 address,
which might be private, and might change frequently[2]. In the rest of this paper,
‘address’ means IP address, and ‘socket address’ means IP address and port number.
We set it forth as a premise that every client, detector, and service provider have
acquired the resolver’s RSA public key in a certified way, such as public key distribution
with certificate authority[16] or software-preinstalled distribution. Each client, detector,
service provider, and ticket have its own unique identifier CID, DID, SID, and TID.
The description h(x), h2(x), and {x}key denote the MD5 hash value of x, h(h(x)), and
data x encrypted key, respectively.

Detector Registration As a configuration, the resolver needs to register a credible
detector. At first, the resolver registers a secret key with the detector securely by
publishing a password for the detector and using the resolver’s public key. In LEXP,
DES, DESede, and AES[4] are supported as a secret key algorithm, and 192 bits is the
max size of a secret key. Next, it generates a certificate of the detector’s public key.

Address Notification At address notification, clients send their h(RFID) and
socket address to the resolver every time the address has changed so that detectors
can obtain the address by h(RFID). LEXP needs to keep confidentiality of these
information, and to prevent malicious users from registering fake address, in order not
to provide tickets of the rightful users to them.

To notify its own socket address, a client sends a request to the resolver and gets
a random number r. Next, it generates a random number ra, and acquires self-global
socket address through the STUN protocol[7]. Then, the client start waiting UDP-
datagram packets at the socket address, and sends to the resolver

header {h(RFID) h(CID) r ra socketaddress}resolver publickey.
The resolver, holding the record sets of h(RFID), h(CID), socket address, and ra of
clients, decrypts the received data by its private key. Then, the resolver checks r to
prevent a replay attack, and checks if h(CID) stored with h(RFID) is equal to the

5

received one. If the condition is met, the resolver updates new socket address and ra
of the client.

Address Resolution When detectors detect an RFID inside their sensing area,
they need to obtain the socket address of a client that corresponds to the RFID in
order to notify the client that a ticket is available.

To resolve the address, a detector generates a random number r and sends the
resolver

header h(DID){h(RFID) r}secretkey.
The resolver, holding the record sets of h(RFID), socket address, and ra of clients,
decrypts the received data by registered secret key and searches the socket address and
ra from record sets by h(RFID), and sends back

header {r ra socketaddress}secretkey.
The detector decrypts the received data, checks r to prevent a replay attack, and
appends a record set of the socket address, ra, and h(RFID).

Ticket Publication If clients receive a notification that a ticket is available, they
can obtain the ticket as their location information. In order to meet the reusability
of location information, tickets should be able to be consumed several times. Tickets
should not contain any identity associated with clients in order to meet the anonymity
of location information.

After address resolution, a detector sends a UDP datagram packet to the socket
address of a client to notify that a ticket is available.

Receiving it, the client sends a request to the detector (the detector’s socket address
is contained in the UDP packet). The client and detector establish a secure session
under the Diffie-Hellman key exchange algorithm[5]. Then, the client sends to the
detector

{h(RFID) ⊕ ra}sessionkey.
The detector, holding the record sets of socket address, ra, and h(RFID) of clients,
searches h(RFID) and ra from the record sets by the address of its source host. Then,
the detector decrypts the received data, exclusive-ors decrypted data by ra, and checks
if the calculated data is equal to h(RFID). If the condition is satisfied, the detector
generates a random number R and a ticket.

ticket = {TID timestamp}detector privatekey

The detector sends to the client

{DID TID R ticket}sessionkey.
The client decrypts the received data, and stores a set of DID, detector’s address,
TID, rt(=at this point’s ra), R, and the ticket in XML format in order to meet the
independency of location information.

After publishing, the detector calculates hN (R), and appends a new record set of
TID, rt(=at this point’s ra), hN (R), and n (at first n = N). n is the number of times
the ticket is consumable. Neither the stored information nor tickets contain anything
about clients.

Ticket Verification Service providers may request a ticket of a certain detector, or
all the ticket a client has acquired, or the latest ticket the client has acquired. Users or
client applications should decide whether they consume the ticket or not. Preferably,

6

2. n rt

7. {r TID}detector_privatekey

1. TID

TID, rt, R, ticket

4. TID hn(R) ticket

6. {TID hn(R) r}detector_publickey

TID, rt, hN(R), n

Service Provider

Client

Detector

5. generates r

+2. n rt+2. n rt+2. n rt2. n rt+2. n rt2. n rt+2. n rt2. n rt

3. calculates hn(R)

Fig. 2. Ticket Verification

client applications and service providers negotiate for tickets and client applications
autonomously handle their tickets.

Figure 2 shows the brief transactions at ticket validating. A client sends a ticket’s
TID to the detector as a request to consume the ticket. The detector sends back n⊕rt.
The client obtains n by exclusive-oring received data by rt, generates the hn(R) from
stored R, and sends TID, hn(R), and the ticket to a service provider (it also sends the
detector’s socket address if the service provider does not know the detector). Receiving
the data, the service provider generates a random number r. If it does not have the
detector’s public key, it obtains the key, certificated by the resolver, from the detector.
The service provider requests the detector to verify the ticket by sending

header {TID hn(R) r}detector publickey.
The detector decrypts the received data, searches the record set of the ticket from TID,
and checks if hN−n(hn(R)) is equal to stored hN (R). If all conditions are satisfied, it
decrements the ticket’s n, and sends back

header {r TID}detector privatekey.
The service provider decrypts the received data by the detector’s public key, checks r
to prevent a replay attack, and checks if TID can be obtained.

4 Analysis

This section explores the set of attacks that remain possible in each phase, and shows
social roles and responsibilities of the constituents of LEXP.

4.1 Security Analysis

We explain how to adapt LEXP to thwart the following attacks. We also argue that
some of the remaining attacks are not likely to be handled within the context of our
system.

Address Notification If attackers sniff data packets at address notification, they
can never obtain the data contents since it is encrypted with the resolver’s public key.

7

If attackers try to perform a replay attack after packet sniffing, their attempt is
thwarted since the data is exclusive-ored by a random number every time.

If attackers obtain an RFID by deploying RFID-readers by themselves and try to
register their address in the resolver maliciously, their attempt is not carried out unless
they know the CID corresponding to the RFID. However, if the attack is done before
the very first time a client registers its h(CID) with the h(RFID), the resolver will
register the attackers’ fake h(CID) and address.

Clients obtain self-global IP address and port number through the STUN protocol.
If the STUN server disguises the address of a client, the client cannot obtain a ticket
and other users might obtain it. LEXP cannot cover this problem, but assumes that
the STUN protocol works correctively.

Address Resolution If attackers sniff data packets at address resolution, they can
never obtain the data contents since the resolver and a detector communicate in a
secure channel with the secret key, which has been transferred securely under public
key cryptosystem.

If attackers try to perform a replay attack after sniffing the encrypted data, their
attempt is thwarted since the data is exclusive-ored by a random number every time
clients’ address is exchanged.

Ticket Publication At ticket publication, a detector and a client generate a session
key every time, and establish a secure session. Even if attackers pretend to be a detector
and establish a secure session with a client, they cannot obtain the secret data unless
they know ra, which is known only to rightful detectors. Also, if attackers pretend to
be a client, they cannot obtain a ticket unless they know ra and h(RFID).

Ticket Verification At ticket verification, a client obtains n ⊕ rt from a detector.
If attackers sniff the data packets, they cannot obtain n unless they know rt.

The client sends a ticket and hn(R) to a service provider. The data might be sent
without encryption. Even if attackers obtain the data by packet sniffing, they cannot
track the user’s movement since the ticket does not contain any identifier associated
with the user, and also they cannot re-consume the ticket unless they know R of the
ticket. This model is an application of the one-time password architecture[8]. hn(R) is
the one-time password. The password required next time is hn−1(R), which attackers
cannot generate unless they know R (hn−1(R) can never be calculated from hn(R)
although hn+1(R) can be easily calculated from hn(R)).

The detector, which generated a ticket, verifies the ticket and sends back its validity.
No attacker can generate a fake result since the result is encrypted by the detector’s
private key. If attackers try to perform a replay attack after packet sniffing, their
attempt is thwarted since the result is exclusive-ored by a random number every time.

4.2 Social Role and Responsibility

In this section, we describe social roles and responsibilities of the resolver, detectors,
and service providers. Table 1 shows the clients’ information that is obtained by the
resolver, detectors, and service providers respectively. Personal information means the
users’ information in the real world such as actual name, sex, and age.

8

Table 1. Clients’ information obtained by the resolver, detectors, and service providers

Resolver Detectors Providers

RFID − © −
h(RFID) © © −
h(CID) © − −

Personal Information − − 4

Resolver The resolver bears social responsibilities toward every client in sorting out
credible detectors since it discloses clients’ address to them.

The resolver is located at the top hierarchy of the chain of certificates in LEXP.
Therefore, it should be run by an organization that has gained public confidence such
as a governmental organization or a nonbusiness organization.

Detectors Detectors are the only entity that obtains clients’ RFIDs. They take upon
responsibility that they never disclose the RFIDs and they never stack the detected
RFIDs.

If malicious detectors or attackers that deploy RFID-readers by themselves stack
detected RFIDs that passed into their sensing area, they can create histories of the
RFIDs’ movement by gathering their information. However, they cannot figure out
actually who carries the RFIDs since personal information is never acquired from an
RFID in LEXP.

In any case, detectors should handle detected RFIDs confidentially under social
and legal pressures like P3P[3]. In an ideal solution, every RFID-reader by itself should
behave as a detector which contains computing capability, network connectivity, and
runs LEXP protocol stack. Then, no one can obtain RFIDs improperly.

Service Providers Some services might work completely anonymously. Other ser-
vices might publish an identifier to each user and manage the user’s personal informa-
tion. Receiving a ticket from a client, the former services confirm that the owner of the
ticket certainly was in the detector’s sensing area, and the latter services might figure
out who the owner is, and might track the client in certain degree if the client sends
many tickets.

Users should decide whether they disclose their ticket to a service provider by
considering several aspects of the provider’s credit. They can also set their client to send
their ticket spontaneously to credible providers. The same way of disclosing personal
information has been commonly accepted in real world, we disclose our information in
order to use some services. Of course, service providers should treat clients’ information
carefully.

5 Related Work

In this section, we discuss three location-aware systems that aim to preserve user
privacy.

The research of Norwegian Computing Center[14] presents advanced concepts for
specifying policies in the context of a mobile phone network. These concepts enable

9

access control based on criteria such as time of the request, location, speed, and identity
of the located object. However, the authors conclude by expressing doubt that average
users will specify such complex policies with the knowledge of all applications. In LEXP,
users do not need to have the knowledge of applications in advance. They can decide
to disclose their location information when utilizing a location-aware service.

Context Service[10] is a general middleware infrastructure for context collection
and dissemination. It has a server, which stores location information for an each or-
ganization such as an enterprise or a family. As a configuration, the administrator of
the organization defines some groups to classify users, and the administrator or the
member of a group need to set a policy, which describe what information is permit-
ted to read for each application. Context Service enforces users to set a server and
have knowledge of all applications to set a privacy policy in advance, and costs for
configuration is much higher than LEXP.

Cricket is a location-support system for in-building, mobile, and location-aware
applications, using own location detectable devices listeners and beacons. A listener
learns its physical location by analyzing information from beacons spread throughout
the building, and sends its location information to an application if it wants to. Cricket
is similar to LEXP in disclosing user’s location information in response to user’s de-
mand. However, Cricket has no mechanism that an application can use to verify the
validity of users’ location information.

6 Conclusion

We proposed Location information EXchange Protocol (LEXP) as a protocol for location-

aware applications using a tracking system. LEXP was designed for preserving user

privacy and certifying users location information. In LEXP, object-detection entities

are separated from location-aware applications, and users can disclose their location

information based on their intention. LEXP guarantees users to keep anonymity, and

guarantees applications that users cannot forge their location information. LEXP real-

izes these requirements by applying chain of confidence model and extending one-time

password architecture. We will develop a context-aware application framework, which

is aware of user context lies over LEXP and discloses a ticket based on user context

automatically.

References

1. A. R. Beresford and F. Stajano. Location privacy in pervasive computing. IEEE
Pervasive Computing, 2(1), 2003.

2. C. Bisdikian, I. Boamah, P. Castro, A. Misra, J. Rubas, N. Villoutreix, D. Yeh,
V. Rasin, H. Huang, and C. Simonds. Intelligent pervasive middleware for context-
based and localized telematics services. In Proceedings of the second international
workshop on Mobile commerce, pages 15–24. ACM Press, 2002.

3. L. Cranor, M. Langheinrich, M. Marchiori, M. Presler-Marshall, and J. Reagle. The
platform for privacy preferences 1.0 (p3p1.0) specification. W3C Recommendation,
April 2002.

4. J. Daemen and V. Rijmen. The Design of Rijndael. Springer-Verlag New York,
Inc., 2002.

10

5. W. Diffie and M. E. Hellman. New directions in cryptography. IEEE Transactions
on Information Theory, IT-22(6):644–654, 1976.

6. A. F. Ginger Myles and N. Davies. Preserving privacy in environments with
location-based applications. IEEE Pervasive Computing, 2(1), 2003.

7. C. H. J. Rosenberg, J. Weinberger and R. Mahy. Stun - simple traversal of user
datagram protocol (udp) through network address translators (nats). The Internet
Engineering Task Force, Request for Comments: 3489, 2003.

8. L. Lamport. Password authentication with insecure communication. Communica-
tions of the ACM, 24(11):770–772, 1981.

9. M. Langheinrich. A privacy awareness system for ubiquitous computing environ-
ments.

10. H. Lei, D. M. Sow, I. John S. Davis, G. Banavar, and M. R. Ebling. The design
and applications of a context service. ACM SIGMOBILE Mobile Computing and
Communications Review, 6(4):45–55, 2002.

11. D. W. Naveen Sastry, Umesh Shankar. Secure verification of location claims. ACM
Workshop on Wireless Security (WiSe 2003) (to appear), September 2003.

12. N. B. Priyantha, A. Chakraborty, and H. Balakrishnan. The cricket location-
support system. In Proceedings of the sixth annual international conference on
Mobile computing and networking, pages 32–43. ACM Press, 2000.

13. S. Sarma, D. Brock, J. Foley, L. Putta, S. Ramachandran, and G. Nassar. The
object name service: Version 0.5 (beta), technical report mit-autoid-tm-004. Tech-
nical report, Auto-ID Center, February 2002.

14. E. Snekkenes. Concepts for personal location privacy policies. In Proceedings of
the 3rd ACM conference on Electronic Commerce, pages 48–57. ACM Press, 2001.

15. R. Want, A. Hopper, V. Falcao, and J. Gibbons. The active badge location system.
ACM Transactions on Information Systems (TOIS), 10(1):91–102, 1992.

16. L. Zhou, F. B. Schneider, and R. V. Renesse. Coca: A secure distributed on-
line certification authority. ACM Transactions on Computer Systems (TOCS),
20(4):329–368, 2002.

