Software Infrastructures for Sensor Networks

Kay Römer et al
Distributed Systems
ETH Zürich
Switzerland
Previous Work

- Provision of key services for sensor networks
 - Node localization
 - Time synchronization

- Application prototyping
 - Object tracking
 - Product monitoring
Locating Smart Dust

- How to localize large populations of „Smart Dust“?
 - Tiny (mm³) autonomous devices
 - Sensing, computing, wireless comm., power supply

- Key issues
 - Challenging device features (e.g., optical communication)
 - Energy efficiency
 - Scalability
 - Accuracy
Lighthouse Approach

- Special lighthouse with parallel beam
 - Observer looks at lighthouse

- β depends on observer's distance from lighthouse rotation axis!
Lighthouse Approach

- We obtain distance to the lighthouse rotation axis!
- All observer locations with given d form the hull of a cylinder
- Localization approach
 - Multiple lighthouses
 - Compute intersection of cylinder hulls
Lighthouse Location System

- **2D: two lighthouses with perp. axes**
 - Rotation axes define coordinate system
 - Distances from axes are 2D coordinates
 - Combine lighthouses into single device

- **3D: three lighthouses**
 - Intersection of three cylinders
Time Sync for Sensor Nets

- Traditional network time sync
 - Sync all nodes, all of the time, at highest possible precision
 - Based on continuously synchronizing clocks

- Key issues
 - Energy efficiency
 - Scalability
 - Robustness (despite network dynamics)
Timestamp Synchronization

- Synchronize **clock readings (timestamps)** instead of clocks
 - Sufficient for many applications
 - Can be done on demand
 - Can be piggybacked on data transfers
Tracking Application

- Proof of concept for time sync and localization approaches
- Randomly deployed sensor nodes
 - Detect presence of target
 - Send notification to base station
- Base station
 - Fuses notifications using time/location
 - Displays track
Prototype Implementation

- **Car**
 - Remote-controlled toy car
 - IR light emitter

- **Sensor nodes**
 - BTnodes
 - IR detector
Ongoing Work

- Programming sensor networks is a difficult task
 - Gap between problem-oriented task description and system-oriented programming of sensor networks
 - Requires expert knowledge in programming distributed embedded systems
 - Error-prone, debugging difficult, …

- Goal: provision of high-level programming abstractions, tools, software infrastructures
 - Self-configuration
 - Target classification
Role-based Self-Configuration

- Many applications require heterogeneous node functions ("roles")
 - Coverage: ACTIVE, STANDBY
 - In-network agg.: SOURCE, AGGREGATOR, SINK

- Assignment of roles to nodes may depend on
 - Hardware capabilities (sensors, memory, ...)
 - Other parameters (location, remaining energy)
 - Network neighborhood

- Framework for generic role assignment
 - Property directory
 - Role specification language
 - Distributed role assignment algorithm
Target Classification

- Common functionality:
 - What kind of vehicle?
 - Human or animal?
 - Friend or enemy?

- Framework for target classification
 - Allows specification of target properties
 - Color, size, weight, sound, …