The Hogthrob Project
(2004 – 2007)

Philippe Bonnet
DIKU

Hogthrob consortium: DIKU, DTU, KVL,
IO Technologies
Danish Committe for Pig Production
The Project

Developing a Sensor Network Infrastructure for Sow Monitoring
- Sensor Nodes on a chip
- Sensor Network Model
- Monitoring Application

Goals:
- Functionalities
 - Tracking
 - Detecting Heat Period
 - ...
- Low Cost (~1 €)
- Low Energy (2 years lifetime)
Sow Monitoring

Initial application model
(state machine):
- Sleep (8h / 2h)
- Awake
- Active
- Heat

Some issues:
- State transitions managed by timer + sensing
 - Different duty cycles (processing / sending)
 - Refined model based on observations of pig behavior
- Trade-offs:
 - Sleeping vs. (Sensing and Networking)
 - In-channel wakeup vs. Additional, low power radio
 - Embedded detection model vs. Feed to a server-based detection model
The Nodes (V0)

• FPGA (Xilinx Spartan3)
 – Co-design Hardware/Software
 • Hardware accelerators (radio, sensors)
 – Different MCUs
 • Clock-based (open core) vs. Asynchronous
 – Also Spec mote, Picoradio at UC Berkeley, Galore project at UCLA
• AVR Core
 – To ease start-up
 – As timer module (counter of limited size, cannot sleep for hours) and AD converter
• Add-on radio board
 – 2.4 GHz radio (NVLSI)
 – Transmit quickly to avoid interferences
• Add-on sensor board
 – Motion detector, possibly microphones

Some issues:
• Explore the design space for a sensor node on a chip
 – Calibrate energy consumption
 – Analog-digital design
 – Modelling
• 2.4 Ghz single channel is a new point on the design space
 – Trade-off store vs. Send
A First Lesson

Component-based design:

– Commodity electronics
 • Designing a board is not that hard
 – Careful about radio characteristics
 • Layout and production left to the digital design specialists next door

– Component Based Programming (TinyOS)
 • Modified baseband, MAC
 • Signal Processing