Bridging WSNs to the Internet:

Issues on Event Filtering, Aggregation and Correlation

Eiko Yoneki and Jean Bacon

Event-Based Middleware

- Event-Based Middleware (Publish/Subscribe)
 - Many-to-many Asynchronous Communication
 - Event Correlation Support
- No Pure Wireless Ad Hoc: Connect to Internet

Emergence of WSN

- High Volume of Wireless Sensor Data
- Need to address Global Computing
- Recent Trend: Open API via Service Management

Issues on Event Correlation

- No interoperable event correlation semantics
 - Various Correlation semantics
 - Consumption mechanism, Duplication Handling
 - Temporal correlation over distributed environments
 - Network Wide Correlation vs. In-Network Aggregation
 - TinyDB Aggregation but no Handling of Duplication
 - TinyLIME Filtering but no Aggregation
- Need to Defined Generic Semantics
 - Semantics and Parameters
- Wireless Networks Specifics
 - Memory Restriction, Other Resource Restriction
 - Real-Time (time of a real event occurrence)

Unified Semantics for Event Correlation

- Event Model
 - Primitive events are instantaneous and atomic
 - Composite events based on composition algebra
 - Timestamp embedded (point-based, interval-based)
 - Spacestamp (location, groupID)
- Use of Event Algebra to Express Event Patterns
 - Well-defined semantics
 - Parameters to restrict basic expressions
- Define Algebra in Two Steps
 - Algebra Operation
 - Restriction Policy for individual composite event
 Consumption Policy, Subset Policy, Precision Policy
- Support Interval-semantics

.

Event Correlation Basic Operators

Conjunction: A+B

Disjunction: A | B

Concatenation: A B

Sequence: A; B

Concurrency: A||B

Iteration: A*

Negation: -A

Selection: A^N

Spatial Restriction: A_S

Temporal Restriction: A_T

Example: Two sensors are placed before (B) and after (A) the stop signs on the road.

• $(B;A)_2$: a car did not make full stop at the stop sign

6

Interval Semantics

- Use Interval Semantics not Point Detection Time
- Composite Event: Occurrence Interval

A: move into the area above 1000m, **B:** temperature goes down to -4°C **C:** humidity goes up to 80%

Temporal Conditions for Composite Events			
Relation	Timestamps of Primitive Events	Point	Interval
A before B	$\begin{aligned} & \text{P-P:} \ t_p(A) < t_p(B) \\ & \text{I-I:} \ t_i(A)^h < t_i(B)^l \end{aligned}$	O A O B	○-A-○ ○-B-○
(A + B) (A B) (A; B)		•-• • •-•	
A overlaps B (A + B) (A B) (A B)	P-P: NA I-I: $(t_i(A)^l < t_i(B)^l) \wedge (t_i(A)^h > t_i(B)^l)$		○—-A—-○ ○—-B—○ ●———●
 Define Precisely Complex Timing Constraints Relations (before, meets, overlaps, finishes, includes, starts, equals) 			

Time Model

- W/ GPS and W/O GPS Coordinated Approach
- Use Interval-Based Timestamp for Inaccuracy
- W GPS:
 - NTP
- In W/O GPS Environments:
 - Lightweight Local Clock Propagation
 - Keep consistency at Aggregator/Sink nodes instead network-wide

10

Conclusions and Future Work

- Unified Semantics for Event Correlation
 - Integrate Filtering, Aggregation and Correlation
 - Interval Semantics
 - Control Event Stream by Policies and Parameters
- Future Work
 - Complete Event Detection Algorithm
 - Integrate with Event Broker Grids
 - Algebra Transformation
 - Create reusable services for composite events
 - Adjust to Device Specific Constraints
 - Transform Complex Expression to Detectable Expression with limited resource

Thank you! Questions?

Eiko.Yoneki@cl.cam.ac.uk