Orientation-Aware Artifacts

Summer School on Wireless Sensor Networks and Smart Objects August 29 - September 3, 2005 Schloss Dagstuhl, Germany

Clemens HOLZMANN

Johannes Kepler Universität Linz, Institut für Pervasive Computing Altenberger Straße 69, 4040 Linz clemens.holzmann@jku.at

Motivation

Invisibility and ubiquity are key objectives in pervasive and ubiquitous computing

Technological advances enable integration of sensors in everyday artifacts

MEMS technology + ad-hoc wireless communication technologies

How to use such artifacts for interaction?

- What information can be acquired about artifacts (self-description)?
- Our focus: artifacts which are aware of their orientation

object platform Why orientation? Changes through manipulation of artifacts shape, color dentification proximity, location orientation high-level infor-mation about self Enhances description of movements and static states in euclidean space Different types of orientation Opens up a plethora of application scenarios pitch There are many open issues roll

yaw

Orientation Sensors Overview

State-of-the-Art

Fields of Application

- Context-aware computing
- Mobile computing
- Distributed computing
- Human computer interaction
- Augmented and virtual reality
- Automotive computing

wireless 3DOF orientation tracking supports up to 4 cubes per receiver integration of 10 sensor elements 180Hz update rate 1200°/sec max. angular speed 6-9V battery 31.2 mm x 43.2 mm x 14.8 mm

wireless 3DOF acceleration tracking based on Analog Devices ADXL2XXJE 1kHz update rate (all three channels) ±10g, shock limit of 500g 3,6V Li-Ion AA size internal battery 25 mm x 25 mm x 5 mm

Gesture Recognition Framework

3 categories of gestures

Category	Timing	Type of object	Dynamics of movement
Hand of the user	Continuously	Hand	High
Object the user holds permanently	Continuously	Artefact (small)	Static-high
Object manipulated occasionally	Occasionally	Artefact (large)	Static-low

 $G_n \equiv (< object > , < name >)$

Framework for orientation sensor-based gesture recognition

- Core component: gesture library which contains an application-independent set of gestures
- Independent of sensor technology / classification methods
- Acommodates a variable number of sensors
- Provides composition of elementary gestures

A. Ferscha, S. Resmerita, C. Holzmann, M. Reichör: **"Orientation sensing for gesture-based interaction with smart artifacts"**. To appear in Computer Communications Journal, 2005.

 $G_3 \equiv (right_hand, throw)$

 $G_{12} \equiv (six_face_box, shake_face_1)$

 $G_{42} \equiv (window, rotate_10)$

Gesture Recognition Framework

Framework for orientation sensor-based gesture recognition

Composition Module

 Detect gestures which are composed from multiple elementary gestures

Application Scenario: Smart Home Environment

Application Scenario: Universal Turning Knob

Idea: replace common turning knobs with a "universal turning knob"

Features:

- Connection automatically established by spatial proximity to controllable device
- Authorization by unique ID of the context knob ("key-functionality")
- Generates control signals of types on/off, multistage and continuous, whose meaning depend on the device to which the knob is connected ("turning knob-functionality")
- Feedback on controlled device (e.g. integrated display) and/or via the turning knob (e.g. integrated vibrator)
- Embed biometric sensor for authenticating the user to the turning knob?
- Wearable, affordable, personalized

Towards Self-X Artifacts

Self-description	 To enable interaction, artifacts have to describe themselves Describes the artifact's properties, interests, capabilities
+	 XML-based self-description, context-dependency, …
Self-management	 To enable autonomy, artifacts have to manage themselves Process controlling the behaviour of the artifact Dynamic rule-based process control, discovery of and communication with artifacts, interaction based on locality / proximity, matching of interests ↔ self-descriptions, …
Self-organisation	 Self-description and -management are a basis for self-organisation Multilateral interaction among a collective of artifacts Static / dynamic composition of artifacts, multilateral interest- matching, performance / energy contraints,
	 How can spatial orientation and linear acceleration contribute? What knowledge can be inferred from static orientation or movements of a collective of smart artifacts? How can it affect self-management and self-organisation? Can new forms of interaction be found?

Thank you!

Summer School on Wireless Sensor Networks and Smart Objects August 29 - September 3, 2005 Schloss Dagstuhl, Germany

Clemens HOLZMANN

Johannes Kepler Universität Linz, Institut für Pervasive Computing Altenberger Straße 69, 4040 Linz clemens.holzmann@jku.at