Polling strategies for predictions in wireless sensor networks

LE BORGNE Yann-Aël
ULB Machine Learning Group
Computer Science Department
Université Libre de Bruxelles
1050 Brussels – Belgium
yleborgn@ulb.ac.be

http://www.ulb.ac.be/di/mlg

Work supported by the COMP2SYS project, sponsored by the Human Resources and Mobility program of the European community (MEST-CT-2004-505079)

Continuous monitoring

Readings are collected from all sensors at regular time intervals

<table>
<thead>
<tr>
<th></th>
<th>s_1</th>
<th>s_2</th>
<th>s_3</th>
<th>s_4</th>
<th>s_5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$s_1(1)$</td>
<td>$s_2(1)$</td>
<td>$s_3(1)$</td>
<td>$s_4(1)$</td>
<td>$s_5(1)$</td>
</tr>
<tr>
<td>2</td>
<td>$s_1(2)$</td>
<td>$s_2(2)$</td>
<td>$s_3(2)$</td>
<td>$s_4(2)$</td>
<td>$s_5(2)$</td>
</tr>
<tr>
<td>3</td>
<td>$s_1(3)$</td>
<td>$s_2(3)$</td>
<td>$s_3(3)$</td>
<td>$s_4(3)$</td>
<td>$s_5(3)$</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Energy concerns

- The monitoring task is often required to run for a long period of time
- Sensing nodes can switch between sleeping/active modes (duty cycle)
 - Energy consumption in sleeping mode orders of magnitude lower than in active mode
- Prediction models and mote scheduling to increase time spent in the sleeping mode

Prediction models

Observation database
$D_{1:T}$, collected over a period T

1 s_1 s_2 s_3 s_4 s_5
1 $s_1(1)$ $s_2(1)$ $s_3(1)$ $s_4(1)$ $s_5(1)$
2 $s_1(2)$ $s_2(2)$ $s_3(2)$ $s_4(2)$ $s_5(2)$
...
T $s_1(T)$ $s_2(T)$ $s_3(T)$ $s_4(T)$ $s_5(T)$

Question: Can I find prediction models h_i for some sensor s_i given a set of other sensors?

Ex: $s_4(t) = h_4(s_1, s_2, s_3) + r_4(t)$
$s_5(t) = h_5(s_1, s_2, s_3) + r_5(t)$
Predictability

- Choice of a prediction model h_i for s_i (linear regression, K-nearest neighbours, neural networks)
- Learning procedure -> identify h_i and estimate residual error r_i
- If $f(r_i) < T$, with f and T user defined, s_i is said to be predictable

Illustration

- Fitting: $s_2(t) = h_2(t) + r_2(t)$
 with $h_2(t) = 1.2s_1(t) - 4.3$ (parameters obtained by the least square method)
- Choice for $F(r_2(t))$:
 - $P(|r_2(t)| > \epsilon)$ (ϵ-approximation error)
 - Examples: $P(|r_2(t)| > 0.5) = 0.14$, $P(|r_2(t)| > 1) = 0$
 - $\Sigma r_2(t)^2$ (quadratic error)
 - ...
How to drive the search?

- Ranking criterion C: e.g. energy
- Run a ‘backward search’:
 - Two subsets \{Sq\}<-\{S\} and \{Sp\}<-\{}
 - Remove sensors \(s_i\) (sorted by C) from \{Sq\} and add them to \{Sp\}, if a prediction model \(h_i\) with \(f(r_i)<T\) can be found.

Prediction models

Observation database \(D_T\), collected over a period T

\[
1 \quad s_1 \quad s_2 \quad s_3 \quad s_4 \quad s_5 \\
1 \quad s_1(1) \quad s_2(1) \quad s_3(1) \quad s_4(1) \quad s_5(1) \\
2 \quad s_1(2) \quad s_2(2) \quad s_3(2) \quad s_4(2) \quad s_5(2) \\
\ldots \quad \ldots \quad \ldots \quad \ldots \quad \ldots \\
T \quad s_1(T) \quad s_2(T) \quad s_3(T) \quad s_4(T) \quad s_5(T)
\]

\[
s_4(t) = h_4(s_1, s_2, s_3) + r_4(t) \\
s_5(t) = h_5(s_1, s_2, s_3) + r_5(t)
\]

Suppose we have \(s_4\) and \(s_5\) with lowest remaining energy, and \(f(r_4)<T\), \(f(r_5)<T\)
Energy savings

- From instant T onwards, prediction models h_4 and h_5 can be used, leaving sensors s_4 and s_5 in their sleeping modes.

<table>
<thead>
<tr>
<th>t</th>
<th>s_1</th>
<th>s_2</th>
<th>s_3</th>
<th>s_4</th>
<th>s_5</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T+1$</td>
<td>$s_1(T+1)$</td>
<td>$s_2(T+1)$</td>
<td>$s_3(T+1)$</td>
<td>$h_4(T+1)$</td>
<td>$h_5(T+1)$</td>
</tr>
<tr>
<td>$T+2$</td>
<td>$s_1(T+2)$</td>
<td>$s_2(T+2)$</td>
<td>$s_3(T+2)$</td>
<td>$h_4(T+2)$</td>
<td>$h_5(T+2)$</td>
</tr>
<tr>
<td>$T+3$</td>
<td>$s_1(T+3)$</td>
<td>$s_2(T+3)$</td>
<td>$s_3(T+3)$</td>
<td>$h_4(T+3)$</td>
<td>$h_5(T+3)$</td>
</tr>
<tr>
<td>$T+$</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

- But two problems:
 - Unequal energy consumption
 - If dependencies change between $\{s_4, s_5\}$ and $\{s_1, s_2, s_3\}$, prediction models are not valid anymore

Prediction models

Observation database D_T, collected over a period T

\[s_4(t) = h_4(s_1, s_2, s_3) + r_4(t) \]
\[s_5(t) = h_5(s_1, s_2, s_3) + r_5(t) \]
Prediction models

Observation database \(D_T \), collected over a period \(T \)

<table>
<thead>
<tr>
<th></th>
<th>(s_1)</th>
<th>(s_2)</th>
<th>(s_3)</th>
<th>(s_4)</th>
<th>(s_5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(s_1(1))</td>
<td>(s_2(1))</td>
<td>(s_3(1))</td>
<td>(s_4(1))</td>
<td>(s_5(1))</td>
</tr>
<tr>
<td>2</td>
<td>(s_1(2))</td>
<td>(s_2(2))</td>
<td>(s_3(2))</td>
<td>(s_4(2))</td>
<td>(s_5(2))</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>(T)</td>
<td>(s_1(T))</td>
<td>(s_2(T))</td>
<td>(s_3(T))</td>
<td>(s_4(T))</td>
<td>(s_5(T))</td>
</tr>
</tbody>
</table>

Other predictions possible?

Ex: \(s_1(t) = h_1(s_4, s_5) + r_1(t) \)
\(s_2(t) = h_2(s_4, s_5) + r_2(t) \)
\(s_3(t) = h_3(s_4, s_5) + r_3(t) \)

Cyclic activity schedule

<table>
<thead>
<tr>
<th>(t)</th>
<th>(s_1)</th>
<th>(s_2)</th>
<th>(s_3)</th>
<th>(s_4)</th>
<th>(s_5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T+1)</td>
<td>(s_1(T+1))</td>
<td>(s_2(T+1))</td>
<td>(s_3(T+1))</td>
<td>(h_4(T+1))</td>
<td>(h_5(T+1))</td>
</tr>
<tr>
<td>(T+2)</td>
<td>(h_1(T+2))</td>
<td>(h_2(T+2))</td>
<td>(h_3(T+2))</td>
<td>(s_4(T+2))</td>
<td>(s_5(T+2))</td>
</tr>
<tr>
<td>(T+3)</td>
<td>(s_1(T+3))</td>
<td>(s_2(T+3))</td>
<td>(s_3(T+3))</td>
<td>(h_4(T+3))</td>
<td>(h_5(T+3))</td>
</tr>
<tr>
<td>(T+4)</td>
<td>(s_1(T+4))</td>
<td>(s_2(T+4))</td>
<td>(s_3(T+4))</td>
<td>(h_4(T+4))</td>
<td>(h_5(T+4))</td>
</tr>
<tr>
<td>(T+5)</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Cycle length = 3

- An activity schedule is sent to each mote, i.e. in this case: \(s_1 \), \(s_2 \), \(s_3 \)
- This schedule is repeated over time
- Increasing the cycle length allows to solicit more sensors with lower remaining energy

<table>
<thead>
<tr>
<th>(s_1)</th>
<th>(s_2)</th>
<th>(s_3)</th>
<th>(s_4)</th>
<th>(s_5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(s_1)</td>
<td>(s_2)</td>
<td>(s_3)</td>
<td>(s_4)</td>
<td>(s_5)</td>
</tr>
<tr>
<td>(s_1)</td>
<td>(s_2)</td>
<td>(s_3)</td>
<td>(s_4)</td>
<td>(s_5)</td>
</tr>
</tbody>
</table>
Results

- 52 sensors, temperature readings from Intel Berkeley lab deployment (2003)
- 2880 readings over 10 days

Average number of sensors used during the tenth day, for different error tolerance parameters:

<table>
<thead>
<tr>
<th>θ</th>
<th>0.9</th>
<th>0.95</th>
</tr>
</thead>
<tbody>
<tr>
<td>θ =0.1</td>
<td>52</td>
<td>52</td>
</tr>
<tr>
<td>0.5</td>
<td>33</td>
<td>37</td>
</tr>
<tr>
<td>1</td>
<td>24</td>
<td>27</td>
</tr>
<tr>
<td>1.5</td>
<td>17</td>
<td>21</td>
</tr>
<tr>
<td>2</td>
<td>11</td>
<td>16</td>
</tr>
<tr>
<td>2.5</td>
<td>7</td>
<td>11</td>
</tr>
</tbody>
</table>

Current and future work

- Adaptive prediction models
 - Multivariate gaussians
 - Lazy Learning
- Search methods
 - Lasso and PCA
 - Gram schmidt
- Development of a public domain benchmark for these methods
Thank you!

References

- M. Birattari, G. Bontempi, and H. Bersini. « Lazy learning meets the recursive least square algorithm ». NIPS, 1999.