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Introduction to Database Replication
What is database replication
The advantages of database replication
A taxonomy of replication strategies:

Synchronous
Asynchronous
Update everywhere
Primary copy

Discussion on the various replication strategies.
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Database Replication
Why replication?

PERFORMANCE: Location transparency is 
difficult to achieve in a distributed 
environment. Local accesses are fast, remote 
accesses are slow. If everything is local, then 
all accesses should be fast.
FAULT TOLERANCE: Failure resilience is also 
difficult to achieve. If a site fails, the data it 
contains becomes unavailable. By keeping 
several copies of the data at different sites, 
single site failures should not affect the overall 
availability.
APPLICATION TYPE: Databases have always 
tried to separate queries form updates to avoid 
interference. This leads to two different 
application types OLTP and OLAP, depending 
on whether they are update or read intensive.

NETWORK

DB DB

Replication is a common strategy in data 
management: RAID technology (Redundant 
Array of Independent Disks), Mirror sites for 
web pages, Back up mechanisms (1-safe, 2-
safe, hot/cold stand by) 
Here we will focus our attention on replicated 
databases but many of the ideas we will 
discuss apply to other environments as well. 
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Remote access to data?
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Replication
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How to replicate data?
There are two basic parameters to select when designing a replication strategy: where 
and when.
Depending on when the updates are propagated:

Synchronous (eager)
Asynchronous (lazy)

Depending on where the updates can take place:
Primary Copy (master)
Update Everywhere (group)

Sync

Async

master group
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Synchronous Replication
Synchronous replication propagates any changes to the data immediately to all existing 
copies. Moreover, the changes are propagated within the scope of the transaction 
making the changes. The ACID properties apply to all copy updates.

Site 1 Site 2 Site 3 Site 4

Transaction
updates commit
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Synchronous Replication
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Synchronous Replication
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Synchronous Replication
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… IT FIRST CONSULTS WITH EVERYBODY ELSE ...
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Synchronous Replication
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Synchronous Replication
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… THE PRICE IS UPDATED AND PROCESSING CONTINUES.
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Asynchronous Replication
Asynchronous replication first executes the updating transaction on the local copy. 
Then the changes are propagated to all other copies. While the propagation takes 
place, the copies are inconsistent (they have different values).
The time the copies are inconsistent is an adjustable parameter which is application 
dependent.

Site 1 Site 2 Site 3 Site 4

Transaction
updates commit
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Asynchronous Replication
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Asynchronous Replication
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Asynchronous Replication
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THEN IT UPDATES THE PRICE LOCALLY AND
CONTINUES PROCESSING (DATA IS NOT CONSISTENT!)...
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Asynchronous Replication
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THE UPDATE IS EVENTUALLY PROPAGATED TO ALL
SITES (PUSH, PULL MODELS)
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Update Everywhere
With an update everywhere approach, changes can be initiated at any of the copies. 
That is, any of the sites which owns a copy can update the value of the data item

Site 1 Site 2 Site 3 Site 4

Transaction
updates commit

Site 1 Site 2 Site 3 Site 4

Transaction
updates commit
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Update Everywhere 
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Primary Copy
With a primary copy approach, there is only one copy which can be updated (the 
master), all others (secondary copies) are updated reflecting the changes to the 
master.

Site 1 Site 2 Site 3 Site 4

Site 1 Site 2 Site 3 Site 4
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Primary Copy
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ONLY ONE SITE IS ALLOWED TO DO UPDATES,
THE OTHER ARE READ ONLY COPIES
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Forms of replication
Synchronous

Advantages:
No inconsistencies (identical copies)
Reading the local copy yields the most up 
to date value
Changes are atomic 

Disadvantages: A transaction has to update all 
sites (longer execution time, worse response 
time)

Asynchronous
Advantages: A transaction is always local 
(good response time)
Disadvantages:

Data inconsistencies
A local read does not always return the 
most up to date value
Changes to all copies are not guaranteed
Replication is not transparent

Update everywhere
Advantages:

Any site can run a transaction
Load is evenly distributed 

Disadvantages:
Copies need to be synchronized 

Primary Copy
Advantages:

No inter-site synchronization is necessary 
(it takes place at the primary copy)
There is always one site which has all the 
updates

Disadvantages:
The load at the primary copy can be quite 
large
Reading the local copy may not yield the 
most up to date value
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Replication Strategies

Synchronous
(eager)

Asynchronous
(lazy)

Primary copy Update everywhere

synchronous
primary copy 

synchronous
update everywhere

asynchronous
update everywhere

asynchronous
primary copy 

The previous ideas can be combined into 4 different replication strategies:
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Replication Strategies
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Advantages:
Updates do not need to be coordinated
No inconsistencies

Disadvantages:
Longest response time 
Only useful with few updates
Local copies are can only be read

Advantages:
No inconsistencies
Elegant (symmetrical solution)

Disadvantages:
Long response times
Updates need to be coordinated

Advantages:
No coordination necessary
Short response times

Disadvantages:
Local copies are not up to date
Inconsistencies

Advantages:
No centralized coordination
Shortest response times

Disadvantages:
Inconsistencies
Updates can be lost (reconciliation)

Primary copy Update everywhere



©Gustavo Alonso. IKS. ETH Zürich 24

Replication (Ideal)

Synchronous
(eager)

Asynchronous
(lazy)

Primary copy Update everywhere

Globally correct
Remote writes

Globally correct
Local writes

Inconsistent reads Inconsistent reads
Reconciliation
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Replication (Practical)

Synchronous
(eager)

Asynchronous
(lazy)

Too Expensive
(usefulness?)

Too expensive
(does not scale)

Feasible Feasible in some
applications

Primary copy Update everywhere
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Summary - I
Replication is used for performance and fault tolerant purposes.
There are four possible strategies to implement replication solutions depending on 
whether it is synchronous or asynchronous, primary copy or update everywhere.
Each strategy has advantages and disadvantages which are more or less obvious given 
the way they work.
There seems to be a trade-off between correctness (data consistency) and performance 
(throughput and response time).
The next step is to analyze these strategies in more detail to better understand how 
they work and where the problems lie.
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Database Replication Strategies
Database environments
Managing replication
Technical aspects and correctness/performance issues of each replication strategy:

Synchronous - primary copy
Synchronous - update everywhere
Asynchronous - primary copy
Asynchronous - update everywhere
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Basic Database Notation
A user interacts with the database by 
issuing read and write operations.
These read and write operations are 
grouped into transactions with the 
following properties:
Atomicity: either all of the 

transaction is executed or nothing 
at all.

Consistency: the transaction produces 
consistent changes.

Isolation: transactions do not interfere 
with each other.

Durability: Once the transaction 
commits, its changes remain.

User

Database

BoT
r(x) r(y) r (z) w(x) w(y)

EoT

x   y
z

Transaction
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Isolation
Isolation is guaranteed by a concurrency 
control protocol.
In commercial databases, this is usually 
2 Phase Locking (2PL):

conflicting locks cannot coexist 
(writes conflict with reads and 
writes on the same item)
Before accessing an item, the item 
must be locked.
After releasing a lock, a 
transaction cannot obtain any more 
locks.

User A

Database

BoT
r(x) r(y) r (z) w(x) w(y)

EoT

x             y

z

Transaction

Write-lock
user A

Write-lock
user A

Read-lock
user A
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Atomicity
A transaction must commit all its 
changes.
When a transaction executes at various 
sites, it must execute an atomic 
commitment protocol, i.e., it must 
commit at all sites or at none of them.
Commercial systems use 2 Phase 
Commit:

A coordinator asks everybody 
whether they want to commit
If everybody agrees, the 
coordinator sends a message 
indicating they can all commit

User

Database
A

BoT
r(x) r(y) r (z) w(x) w(y)

EoT

Transaction

Database
B

Database
C

x y z
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Transaction Manager
The transaction manager takes care of 
isolation and atomicity.
It acquires locks on behalf of all 
transactions and tries to come up with 
a serializable execution, i.e., make it 
look like the transactions were 
executed one after the other.
If the transactions follow 2 Phase 
Locking, serializability is guaranteed. 
Thus, the scheduler only needs to 
enforce 2PL behaviour. scheduler

Transactions from
different users

Operations from the
different transactions

2 Phase Locking
is enforced

Transactions are
serialized
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Managing Replication
When the data is replicated, we still 
need to guarantee atomicity and 
isolation.
Atomicity can be guaranteed by using 2 
Phase Commit. This is the easy part.
The problem is how to make sure the 
serialization orders are the same at all 
sites, i.e., make sure that all sites do 
the same things in the same order 
(otherwise the copies would be 
inconsistent). Scheduler A Scheduler B
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Managing Replication
To avoid this, replication protocols are 
used.
A replication protocol specifies how 
the different sites must be coordinated 
in order to provide a concrete set of 
guarantees.
The replication protocols depend on the 
replication strategy (synchronous, 
asynchronous, primary copy, update 
everywhere).

Scheduler A Scheduler B

Replication

Protocol
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Replication Strategies

Synchronous
(eager)

Asynchronous
(lazy)

Primary copy Update everywhere

synchronous
primary copy 

synchronous
update everywhere

asynchronous
update everywhere

asynchronous
primary copy 

Now we can analyze the advantages and disadvantages of each strategy:
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Cost of Replication
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CPU
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(replication
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Assume a 50 node replicated system 
where a fraction s of the data is 
replicated and w represents the fraction 
of updates made (ws = replication 
factor)
Overall computing power of the system:

No performance gain with large ws
factor (many updates or many 
replicated data items)
Reads must be local to get performance 
advantages.

N
1 w s (N 1)+ ⋅ ⋅ −
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Synchronous - update everywhere
Assume all sites contain the same data.
READ ONE-WRITE ALL

Each sites uses 2 Phase Locking.
Read operations are performed locally.
Write operations are performed at all sites (using a distributed locking protocol).

This protocol guarantees that every site will behave as if there were only one database. 
The execution is serializable (correct) and all reads access the latest version.

This simple protocol illustrates the main idea behind replication, but it needs to be 
extended in order to cope with realistic environments:
Sites fail, which reduces the availability (if a site fails, no copy can be written). 
Sites eventually have to recover (a recently recovered site may not have the latest 
updates).
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Dealing with Site Failures
Assume, for the moment, that there are no communication failures. Instead of writing to 

all copies, we could
WRITE ALL AVAILABLE COPIES

READ = read any copy, if time-out, read another copy.
WRITE = send Write(x) to all copies. If one site rejects the operation, then abort. 
Otherwise, all sites not responding are “missing writes”.
VALIDATION = To commit a transaction

Check that all sites in “missing writes” are still down. If not, then abort the 
transaction.
Check that all sites that were available are still available. If some do not respond, 
then abort.
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Each site uses 2PL
Read operations are performed locally
Write operations involve locking all 
copies of the data item (request a lock, 
obtain the lock, receive an 
acknowledgement)
The transaction is committed using 
2PC
Main optimizations are based on the 
idea of  quorums (but all we will say 
about this protocol also applies to 
quorums)

SITE A SITE B SITE C

BOT

R(x)

W(x)
Lock Lock

Upd

Upd Upd

... ...

request

ack

change

Synchronous - Update Everywhere Protocol
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Response Time and Messages

centralized database update

T=

T=

replicated database update: 2N messages
2PC

The way replication takes place (one operation at a time),
increases the response time and, thereby, the conflict
profile of the transaction. The message overhead is too
high (even if broadcast facilities are available).
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The Deadlock Problem
Approximated deadlock rate:

if the database size remains constant, or

if the database size grows with the number 
of nodes.
Optimistic approaches may result in 
too many aborts.

TPS Action_ Time Actions N
4 DB_ Size

2 5 3

2
⋅ ⋅ ⋅

⋅

TPS Action_ Time Actions N
4 DB_ Size

2 5

2

⋅ ⋅ ⋅
⋅

A B C

BOT

R(x)

W(x)
Lock

D

Lock
W(x)

BOT
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Synchronous - update everywhere
Advantages:

No inconsistencies
Elegant (symmetrical solution)

Disadvantages:
Very high number of messages involved
Transaction response time is very long
The system will not scale because of deadlocks (as the number of
nodes increases, the probability of getting into a deadlock gets too 
high)

Data consistency is guaranteed. Performance may be 
seriously affected with this strategy. The system may also 
have scalability problems (deadlocks). High fault tolerance.
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Synchronous - primary copy
Advantages:

Updates do not need to be coordinated
No inconsistencies, no deadlocks.

Disadvantages:
Longest response time 
Only useful with few updates (primary copy is a bottleneck)
Local copies are almost useless
Not used in practice

Similar problems to those of Sync - update everywhere.
Including scalability problems (bottlenecks). Data
consistency is guaranteed. Fault tolerant.
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Async - primary copy protocol
Update transactions are executed at the 
primary copy site
Read transactions are executed locally
After the transaction is executed, the 
changes are propagated to all other 
sites
Locally, the primary copy site uses 2 
Phase Locking
In this scenario, there is no atomic 
commitment problem (the other sites 
are not updated until later)

SITE A SITE B SITE C

BOT

R(x)

W(x)

Upd

Upd Upd
... ...

change

Txn

EOT

R(x)
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Asynchronous - primary copy
Advantages:

No coordination necessary
Short response times (transaction is local)

Disadvantages:
Local copies are not up to date (a local read will not always include 
the updates made at the local copy)
Inconsistencies (different sites have different values of the same data 
item)

Performance is good (almost same as if no replication). 
Fault tolerance is limited. Data inconsistencies arise. 
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Async - update everywhere protocol
All transactions are executed locally
After the transaction is executed, the 
changes are propagated to all other 
sites
Locally, a site uses 2 Phase Locking
In this scenario, there is no atomic 
commitment problem (the other sites 
are not updated until later)
However, unlike with primary copy, 
updates need to be coordinated

SITE A SITE B SITE C

BOT

W(x)

Upd Upd

EOT

BOT

W(x)

EOT



©Gustavo Alonso. IKS. ETH Zürich 46

Async / Update Everywhere

DB 1

DB 3

DB 2

Probability of needing  reconciliation:

What does it mean to commit a 
transaction locally? There is no 
guarantee that a committed transaction 
will be valid (it may be eliminated if 
“the other value” wins).

TPS Action_ time Actions N
2 DB_ Size

2 3 3⋅ ⋅ ⋅
⋅X=3 X=5
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Reconciliation
Such problems can be solved using pre-arranged patterns:

Latest update win (newer updates preferred over old ones) 
Site priority (preference to updates from headquarters)
Largest value (the larger transaction is preferred)

or using ad-hoc decision making procedures:
identify the changes and try to combine them
analyze the transactions and eliminate the non-important ones
implement your own priority schemas
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Asynchronous - update everywhere
Advantages:

No centralized coordination
Shortest response times

Disadvantages:
Inconsistencies
Updates can be lost (reconciliation)

Performance is excellent (same as no replication). High
fault tolerance. No data consistency. Reconciliation is
a tough problem (to be solved almost manually).
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Summary - II 
We have seen the different technical issues involved with each replication 
strategy
Each replication strategy has well defined problems (deadlocks, 
reconciliation, message overhead, consistency) related to the way the 
replication protocols work
The trade-off between correctness (data consistency) and performance 
(throughput and response time) is now clear
The next step is to see how these ideas are implemented in practice
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Replication in Practice
Replication scenarios
On Line Transaction Processing (OLTP)
On Line Analytical Processing (OLAP)
Replication in Sybase
Replication in IBM
Replication in Oracle
Replication in Lotus Notes
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Replication Scenarios
In practice, replication is used in many different scenarios. Each one has 
its own demands. A commercial system has to be flexible enough to 
implement several of these scenarios, otherwise it would not be 
commercially viable.
Database systems, however, are very big systems and evolve very slowly. 
Most were not designed with replication in mind. Commercial solutions 
are determined by the existing architecture, not necessarily by a sound 
replication strategy. Replication is fairly new in commercial databases! 
The focus on OLTP and OLAP determines the replication strategy in many 
products.
From a practical standpoint, the trade-off between correctness and 
performance seems to have been resolved in favor of performance.
It is important to understand how each system works in order to 
determine whether the system will ultimately scale, perform well, require 
frequent manual intervention ...
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OLTP vs. OLAP

updates
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data
Mart

online
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Knowledge
Information

Data
Warehouse

Data Mining

OLTP

OLAP
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OLTP

complex
queries

data
Mart

OLTP

OLAP

High performance (Txn/s)
High availability
High fault tolerance
Working with the latest data
On line

OLTP
online

DB

online
DB
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OLAP

online
DB

OLTP

data gathering 
and processing

Data
Warehouse

complex
queries

Knowledge
Information

Data Mining

OLAP

data
Mart

Data storage
Data cross referencing
Decision support
Statistical analysis
Off line
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Commercial replication
When evaluating a commercial replication strategy, keep in mind:

The customer base (who is going to use it?).
The underlying database (what can the system do?).
What competitors are doing (market pressure).
There is no such a thing as a “better approach”.
The complexity of the problem.

Replication will keep evolving in the future, current systems may change 
radically.
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Sybase Replication Server
(http://www.sybase.com)

Goal of replication: Avoid server bottlenecks by moving data to the 
clients. To maintain performance, asynchronous replication is used 
(changes are propagated only after the transaction commits). The changes 
are propagated on a transaction basis (get the replicas up-to-date as 
quickly as possible). Capture of changes is done “off-line”, using the log 
to minimize the impact on the running server.
Applications: OLTP, client/server architectures, distributed database 
environments.
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Sybase Replication Architecture
primary

data log

DATA
MANAGER

LOG
TRANSFER
MANAGER

REPLICATION
SERVER

REPLICATION
SERVER

DATA
MANAGER

replicated
data

asynchronous
stored procedure

synchronous 
stored procedure

(2PC)

decoupled

change detection
wrapping

subscription
data change detection

updates
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Sybase Replication (basics)
Loose consistency (= asynchronous). 
Primary copy.
PUSH model: replication takes place by 
“subscription”. A site subscribes to 
copies of data. Changes are propagated 
from the primary as soon as they occur. 
The goal is to minimize the time the 
copies are not consistent but still 
within an asynchronous environment 
(updates are sent only after they are 
committed).
Updates are taken from the log in 
stable storage (only committed 
transactions).
Remote sites update using special 
stored procedures (synchronous or a 
synchronous).
Persistent queues are used to store 
changes in case of disconnection.

The Log Transfer Manager monitors the 
log of Sybase SQL Server and notifies 
any changes to the replication server. It 
acts as a light weight process that 
examines the log to detect committed 
transactions (a wrapper). It is possible 
to write your own Log Transfer Manager 
for other systems. Usually runs in the 
same system as the source database. 
When a transaction is detected, its log 
records are sent to the:
The Replication Server usually runs on 
a different system than the database to 
minimize the load. It takes updates, 
looks who is subscribed to them and 
send them to the corresponding 
replication servers at the remote site. 
Upon receiving these changes, a 
replication server applies them at the 
remote site. 
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Sybase Replication (updates)
Primary copy. All updates must be done at the primary using either :

Synchronous stored procedures, which reside at the primary and are 
invoked (RPC) by any site who wants to update. 2 Phase Commit is used.
Stored procedures for asynchronous transactions: invoked locally, but sent 
asynchronously to the primary for execution. If the transaction fails 
manual intervention is required to fix the problem.
It is possible to fragment a table and make different sites the primary 
copy for each fragment.
It is possible to subscribe to selections of tables using WHERE clauses.
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IBM Data Propagator
(http://www.ibm.com/)

Goal: Replication is seen as part of the “Information Warehousing”
strategy. The goal is to provide complex views of the data for decision-
support. The source systems are usually highly tuned, the replication 
system is designed to interfere as less as possible with them: replication 
is asynchronous and there are no explicit mechanisms for updating.
Applications: OLAP, decision-support, data warehousing, data mining.
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IBM Replication (architecture)

DATA
MANAGER

CAPTURE
MVS

APPLY
PROGRAM

Replicated
data

APPLY
PROGRAM

data log

Primary data

UOW change
consistent

change
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IBM Data Propagator (basics)
Asynchronous replication.
No explicit update support (primary 
copy, if anything).
PULL MODEL: (smallest interval 1 
minute) the replicated data is 
maintained by querying either the 
primary data, the change table, the 
consistent change table, or any 
combination of the three. The goal is to 
support sophisticated views of the data 
(data warehousing). Pull model means 
replication is driven by the recipient of 
the replica. The replica must “ask” for 
updates to keep up-to-date.
Updates are taken from the main 
memory buffer containing log entries 
(both committed and uncommitted 
entries; this is an adjustable 
parameter).

Updates are sent to the primary 
(updates converted into inserts if tuple
has been deleted, inserts converted into 
updates if tuple already exists, as in 
Sybase). The system is geared towards 
decision support, replication 
consistency is not a key issue. 
Sophisticated data replication is 
possible (base aggregation, change 
aggregation, time slices …)
Sophisticated optimizations for data 
propagation (from where to get the 
data).
Sophisticated views of the data 
(aggregation, time slicing).
Capture/MVS is a separate address 
space monitor, to minimize 
interference it captures log records 
from the log buffer area
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IBM Data Propagator
There are two key components in the 

architecture:
Capture:  analyzes raw log information 
from the buffer area (to avoid I/O). It 
reconstructs the logical log records and 
creates a “change table” and a 
“transaction table” (a dump of all 
database activity).
Apply Program: takes information from 
the database, the change table and the 
transaction table to built “consistent 
change table” to allow consistent 
retrieval and time slicing. It works by 
“refreshing” data (copies the entire 
data source) or “updating” (copies 
changes only). It allows very useful 
optimizations (get the data from the 
database directly, reconstruct, etc.).

The emphasis is on extracting information:
Data Propagator/2 is used to subscribe 
and request data.
It is possible to ask for the state of 
data at a given time (time slicing or 
snapshots).
It is possible to ask for changes:

how many customers have been 
added?
how many customers have been 
removed?
how many customers were between 
20 and 30 years old?

This is not the conventional idea of 
replication!
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Oracle  Symmetric Replication
(http://www.oracle.com)

Goals: Flexibility. It tries to provide a platform that can be tailored to as 
many applications as possible. It provides several approaches to
replication and the user must select the most appropriate to the
application. There is no such a thing as a “bad approach”, so all of them 
must be supported (or as many as possible)
Applications: intended for a wide range of applications.
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Oracle Replication (architecture)
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Oracle  Replication
“DO-IT-YOURSELF” model supporting  
almost any kind of replication (push 
model, pull model), Dynamic 
Ownership (the site designated as the 
primary can change over time), and 
Shared Ownership (update anywhere, 
asynchronously).
One of the earliest implementations: 
Snapshot. This was a copy of the 
database. Refreshing was done by 
getting a new copy. 
Symmetric replication: changes are 
forwarded at time intervals (push) or 
on demand (pull).
Asynchronous replication is the default 
but synchronous is also possible. 
Primary copy (static / dynamic) or 
update everywhere.

Readable Snapshots: A copy of the 
database. Refresh is performed by 
examining the log records of all 
operations performed, determining the 
changes and applying them to the 
snapshot. The snapshot cannot be 
modified but they are periodically 
refreshed (complete/fast refreshes)
Writable Snapshots: fast-refreshable 
table snapshots but the copy can be 
updated (if changes are sent to the 
master copy, it becomes a form of 
asynchronous - update everywhere 
replication). 
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Oracle  Replication (basics)
Replication is based on these two ideas:

Triggers: changes to a copy are 
captured by triggers. The trigger 
executes a RPC to a local queue and it 
inserts the changes in the queue. These 
changes take the form of an invocation 
to a stored procedure at the remote 
site. These triggers are “deferred” in 
the sense that they work 
asynchronously with respect to the 
transaction
Queues: queues follow a FIFO 
discipline and 2PC is used to guarantee 
the call makes it to the queue at the 
remote site. At the remote site, the 
queue is read and the call made in the 
order they arrive.

Dynamic ownership: It is possible to 
dynamically reassign the “master copy”
to different sites. That is, the primary 
copy can move around (doing it well, it 
is then possible to always read and 
write locally)
Shared ownership: (= update 
everywhere!). Conflicts are detected by 
propagating both the before and the 
after image of data. When a conflict is 
detected, there are several predefined 
routines that can be automatically 
called or the user can write and ad-hoc 
routine to resolve the conflict
Synchronous, update everywhere: using 
the sync -update everywhere protocol 
previosuly discussed
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Replication in Lotus Notes (Domino) 
Lotus Notes implements asynchronous (lazy), update every-where 
replication in an epidemic environment.
Lotus Notes distinguishes between a replica and a copy (a snapshot). All 
replicas have the same id. Each copy has its own id.
Lotus allows to specify what to replicate (in addition to replica stubs and 
field level replication) to minimize overhead. 
Replication conflicts are detected and some attempt is made at 
reconciliation (user intervention is usually required).
Lotus Notes is a cooperative environment, the goal is data distribution 
and sharing. Consistency is largely user defined and not enforced by the 
system.



©Gustavo Alonso. IKS. ETH Zürich 69

Replication in Lotus Notes
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Replication in  Lotus Notes 
Notes also allows to specify when to replicate …

.. and in which direction to replicate:
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Token Passing Protocol
Replication is used in many applications other than databases. For these 

applications, there is a large number of protocols and algorithms that can 
be used to guarantee “correctness”:
The token based protocol is used as an example of replication in 
distributed systems to illustrate the problems of fault-tolerance and 
starvation. 
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Distributed Mutual Exclusion
The original protocol was proposed for distributed mutual exclusion. It can be used, 
however, to maintain replicated data and to implement the notion of dynamic 
ownership (Oracle replication).

In here, it will be used for the following:
Asynchronous, master copy (dynamic ownership)
The protocol will be used to locate the master copy
Requirements:

there is only one master copy at all times
deadlock free
fault-tolerant
starvation free
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Token Passing (model)
Working assumptions

Communications are by message passing
Sites are fail-stop or may fail to send and receive messages
Failed sites eventually recover (failure detection by time-out)
Network partitions may occur
No duplicate messages and FIFO delivery
Causality enforced by logical clocks (Lamport)

Happen Before Relation 
(1) events in a process are ordered
(2) sending(m)       receiving(m)
(3) if a      b  and b      c,then a      c

Clock condition
(1) each event has a timestamp
(2) succesive events have

increasing timestamps
(3) receiving(m) has a higher 
timestamp than       

sending(m)
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Basic Protocol (no failures)
Assume no communication or site failures
A node with the token is the master copy
Each site, s, has a pointer, Owner(s), indicating where that site believes the master 
copy is located
The master copy updates locally
Other sites sent their updates following the pointer
When the master copy reassigns the token (the master copy moves to another site), 
the ex-master copy readjusts its pointer so it points towards the new master copy
For correctness reasons, assume the master copy is never reassigned while updates are 
taking place.
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Basic Protocol (owner)
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Basic Protocol (update)
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Basic Protocol (token change)
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Basic Protocol (update)
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Basic Protocol (token change)
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Basic Protocol (update)
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Basic Protocol (algorithms)
Requesting the master copy (s)

IF Owner(s) = s THEN
master copy already in s

ELSE
SEND(request) to Owner(s)
RECEIVE(Token)
Owner(s) = s

END (*IF*)

Receiving a request (q)

Receive (request(s))
IF Owner(q) = q THEN

Owner(q) = s
SEND(Token) to s

ELSE
SEND(request(s)) to Owner(q)

END (*IF*)
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Failures
If communication failures occur, the token may disappear while in transit (message is 

lost).
First, the loss of the token must be detected
Second, the token must be regenerated
Third, after the regeneration, there must be only one token in the system (only one 
master copy)

To do this, logical clocks are used:
OwnerTime(s) is a logical clock associated with the token, it indicates when site s 
sent or received the token
TokenState(s) is the state of the shared resource (values associated with the token 
itself)
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Token Loss Protocol
Assume bounded delay (if a message does not arrive after time t, it has been lost). 
Sites do not fail
When a site sends the token, it sends along its own OwnerTime
When a site receives the token, it sets its OwnerTime to a value greater than that 
received with the token
From here, it follows that the values of the OwnerTime variables along the chain of 
pointers must increase
If, along the chain of pointers, there is a pair of values that is not increasing, the 
token has been lost between these two sites and must be regenerated
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Token Loss Protocol
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Detecting Token Loss
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Detecting Token Loss
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Detecting Token Loss
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Regenerating the Token
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Token Recovered
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Token Loss (algorithm 1)
Request (s)
IF Owner(s) = s THEN

already master copy
ELSE

SEND(request(s),OwnerTime(s)) to Owner(s)
Receive(Token,TTime) on Timeout(ReqDelay) ABORT
Owner(s) = s
OwnerTime(s) = TTime + 1
TokenState = Token

END (*IF*)
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Token Loss (algorithm 2)

Receive (request(s),timestamp) FROM p
IF timestamp > OwnerTime(q) THEN (* TOKEN IS LOST *)

SEND(GetToken) TO p
Receive(Token,TTime) FROM p ON Timeout ABORT
Owner(q) = q
OwnerTime(q) = TTime + 1
TokenState = Token

END (*IF*)
IF Owner(q) <> q THEN 

SEND(request(s),timestamp) TO Owner(q)
ELSE

Owner(q) = s
SEND(Token, OwnerTime(q)) TO s      

END (*IF*)
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Site Failures
Sites failures interrupt the chain of pointers (and may also result in the token being 
lost, if the failed site had the token)
In this case, the previous algorithm ABORTs the protocol
Instead of aborting, and to tolerate site failures, a broadcast algorithm can be used to 
ask everybody and find out what has happened in the system
Two “states” are used

TokenReceived: the site has received the token
TokenLoss: a site determines that somewhere in the system there are p,q such 
that Owner(p) = q and OwnerTime(p) > OwnerTime(q)
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Chain Loss due to Site Failure
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Chain Loss due to Site Failure
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Chain Loss due to Site Failure
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Chain Loss due to Site Failure

Owner(s) = k

B

A

OwnerTime(s)0

1

UPD

UPD

0

1

TIMEOUT
D

3
3



©Gustavo Alonso. IKS. ETH Zürich 97

Token Loss due to Site Failure
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Token Loss due to Site Failure
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Chain Loss due to Site Failure
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Detecting Token Loss in Others
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Detecting Token Loss in Others
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Detecting Token Loss in Others
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Detecting Token Loss in Others

Owner(s) = k

A

B

OwnerTime(s)

1

0

Owner(C), O
wnerTime(C)Owner(A), 

OwnerTime(A)

Owner(D),OwnerTime(D)

C

D

0

2



©Gustavo Alonso. IKS. ETH Zürich 104

Regenerating Token in Others
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Regenerating the Token
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Token Recovered
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Broadcast (algorithm)
SITE s: SEND (Bcast) TO all sites
COLLECT replies UNTIL TokenReceived OR TokenLoss
IF TokenReceived THEN

Owner(s) = s
OwnerTime = TTime + 1
TokenState = Token

END (*IF*)
IF TokenLoss THEN

DetectionTime = OwnerTime(q)
SEND(Regenerate, DetectionTime, p) TO q
RESTART

END (*IF*)
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Broadcast Request (algorithm)
Broadcast Request arrives at q from s:
Receive(Bcast)
IF Owner(q) = q THEN

Owner(q) = s
SEND(Token,OwnerTime(q)) TO s

ELSE
SEND(Owner(q),OwnerTime(q)) TO s

END (*IF*)
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Regenerate Token (algorithm)
A request to regenerate the token arrives at q:
Receive(Regenerate, DetectionTime, p)
IF OwnerTime(q) = DetectionTime THEN

SEND(GetToken) TO p
Receive(Token,TTime) FROM p ON Timeout ABORT
Owner(q) = q
OwnerTime(q) = TTime + 1
TokenState = Token

END (*IF*)
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Starvation
Starvation can occur if a request for the token keeps going around the system behind 
the token but it always arrives after another request
One way to solve this problem is to make a list of all requests, order the requests by 
timestamp and only grant a request when it is the one with the lowest timestamp in 
the list
The list can be passed around with the token and each site can keep a local copy of the 
list that will be merged with that arriving with the token (thereby avoiding that 
requests get lost in the pointer chase)
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