
©Gustavo Alonso. IKS. ETH Zürich 1

Introduction to Database Replication
What is database replication
The advantages of database replication
A taxonomy of replication strategies:

Synchronous
Asynchronous
Update everywhere
Primary copy

Discussion on the various replication strategies.

©Gustavo Alonso. IKS. ETH Zürich 2

Database Replication
Why replication?

PERFORMANCE: Location transparency is
difficult to achieve in a distributed
environment. Local accesses are fast, remote
accesses are slow. If everything is local, then
all accesses should be fast.
FAULT TOLERANCE: Failure resilience is also
difficult to achieve. If a site fails, the data it
contains becomes unavailable. By keeping
several copies of the data at different sites,
single site failures should not affect the overall
availability.
APPLICATION TYPE: Databases have always
tried to separate queries form updates to avoid
interference. This leads to two different
application types OLTP and OLAP, depending
on whether they are update or read intensive.

NETWORK

DB DB

Replication is a common strategy in data
management: RAID technology (Redundant
Array of Independent Disks), Mirror sites for
web pages, Back up mechanisms (1-safe, 2-
safe, hot/cold stand by)
Here we will focus our attention on replicated
databases but many of the ideas we will
discuss apply to other environments as well.

©Gustavo Alonso. IKS. ETH Zürich 3

Remote access to data?

DATA

Zurich London New York Tokyo

LOAD
RESPONSE

TIME
CRITICAL

©Gustavo Alonso. IKS. ETH Zürich 4

Replication

DATA

Zurich

DATA

London

DATA

New York

DATA

Tokyo

LOAD RESPONSE
TIME

CRITICAL

©Gustavo Alonso. IKS. ETH Zürich 5

How to replicate data?
There are two basic parameters to select when designing a replication strategy: where
and when.
Depending on when the updates are propagated:

Synchronous (eager)
Asynchronous (lazy)

Depending on where the updates can take place:
Primary Copy (master)
Update Everywhere (group)

Sync

Async

master group

©Gustavo Alonso. IKS. ETH Zürich 6

Synchronous Replication
Synchronous replication propagates any changes to the data immediately to all existing
copies. Moreover, the changes are propagated within the scope of the transaction
making the changes. The ACID properties apply to all copy updates.

Site 1 Site 2 Site 3 Site 4

Transaction
updates commit

©Gustavo Alonso. IKS. ETH Zürich 7

Synchronous Replication

DATA

London

DATA

New York

DATA

Tokyo

Price = $ 50 Price = $ 50 Price = $ 50

DATA

Zurich

Price = $ 50

DATA IS CONSISTENT AT ALL SITES

©Gustavo Alonso. IKS. ETH Zürich 8

Synchronous Replication

DATA

Zurich

DATA

London

DATA

New York

DATA

Tokyo

Price = $ 50 Price = $ 50 Price = $ 50 Price = $ 50

A SITE WANTS TO UPDATE THE PRICE ...

©Gustavo Alonso. IKS. ETH Zürich 9

Synchronous Replication

DATA

Zurich

DATA

London

DATA

New York

DATA

Tokyo

Price = $ 50 Price = $ 50 Price = $ 50 Price = $ 50

… IT FIRST CONSULTS WITH EVERYBODY ELSE ...

©Gustavo Alonso. IKS. ETH Zürich 10

Synchronous Replication

DATA

Zurich

DATA

London

DATA

New York

DATA

Tokyo

Price = $ 50 Price = $ 50 Price = $ 50 Price = $ 50

… AN AGREEMENT IS REACHED ...

©Gustavo Alonso. IKS. ETH Zürich 11

Synchronous Replication

DATA

Zurich

DATA

London

DATA

New York

DATA

Tokyo

Price = $ 100 Price = $ 100 Price = $ 100 Price = $ 100

… THE PRICE IS UPDATED AND PROCESSING CONTINUES.

©Gustavo Alonso. IKS. ETH Zürich 12

Asynchronous Replication
Asynchronous replication first executes the updating transaction on the local copy.
Then the changes are propagated to all other copies. While the propagation takes
place, the copies are inconsistent (they have different values).
The time the copies are inconsistent is an adjustable parameter which is application
dependent.

Site 1 Site 2 Site 3 Site 4

Transaction
updates commit

©Gustavo Alonso. IKS. ETH Zürich 13

Asynchronous Replication

DATA

Zurich

DATA

London

DATA

New York

DATA

Tokyo

Price = $ 50 Price = $ 50 Price = $ 50 Price = $ 50

DATA IS CONSISTENT AT ALL SITES

©Gustavo Alonso. IKS. ETH Zürich 14

Asynchronous Replication

DATA

Zurich

DATA

London

DATA

New York

DATA

Tokyo

Price = $ 50 Price = $ 50 Price = $ 50 Price = $ 50

A SITE WANTS TO UPDATE THE PRICE ...

©Gustavo Alonso. IKS. ETH Zürich 15

Asynchronous Replication

DATA

Zurich

DATA

London

DATA

New York

DATA

Tokyo

Price = $ 50 Price = $ 100 Price = $ 50 Price = $ 50

THEN IT UPDATES THE PRICE LOCALLY AND
CONTINUES PROCESSING (DATA IS NOT CONSISTENT!)...

©Gustavo Alonso. IKS. ETH Zürich 16

Asynchronous Replication

DATA

Zurich

DATA

London

DATA

New York

DATA

Tokyo

Price = $ 100 Price = $ 100 Price = $ 100 Price = $ 50

THE UPDATE IS EVENTUALLY PROPAGATED TO ALL
SITES (PUSH, PULL MODELS)

©Gustavo Alonso. IKS. ETH Zürich 17

Update Everywhere
With an update everywhere approach, changes can be initiated at any of the copies.
That is, any of the sites which owns a copy can update the value of the data item

Site 1 Site 2 Site 3 Site 4

Transaction
updates commit

Site 1 Site 2 Site 3 Site 4

Transaction
updates commit

©Gustavo Alonso. IKS. ETH Zürich 18

Update Everywhere

DATA

Zurich

DATA

London

DATA

New York

DATA

Tokyo

Price = $ 50 Price = $ 50 Price = $ 50 Price = $ 50

ALL SITES ARE ALLOWED TO UPDATE THEIR COPY

©Gustavo Alonso. IKS. ETH Zürich 19

Primary Copy
With a primary copy approach, there is only one copy which can be updated (the
master), all others (secondary copies) are updated reflecting the changes to the
master.

Site 1 Site 2 Site 3 Site 4

Site 1 Site 2 Site 3 Site 4

©Gustavo Alonso. IKS. ETH Zürich 20

Primary Copy

DATA

Zurich

DATA

London

DATA

New York

DATA

Tokyo

Price = $ 50 Price = $ 50 Price = $ 50 Price = $ 50

ONLY ONE SITE IS ALLOWED TO DO UPDATES,
THE OTHER ARE READ ONLY COPIES

©Gustavo Alonso. IKS. ETH Zürich 21

Forms of replication
Synchronous

Advantages:
No inconsistencies (identical copies)
Reading the local copy yields the most up
to date value
Changes are atomic

Disadvantages: A transaction has to update all
sites (longer execution time, worse response
time)

Asynchronous
Advantages: A transaction is always local
(good response time)
Disadvantages:

Data inconsistencies
A local read does not always return the
most up to date value
Changes to all copies are not guaranteed
Replication is not transparent

Update everywhere
Advantages:

Any site can run a transaction
Load is evenly distributed

Disadvantages:
Copies need to be synchronized

Primary Copy
Advantages:

No inter-site synchronization is necessary
(it takes place at the primary copy)
There is always one site which has all the
updates

Disadvantages:
The load at the primary copy can be quite
large
Reading the local copy may not yield the
most up to date value

©Gustavo Alonso. IKS. ETH Zürich 22

Replication Strategies

Synchronous
(eager)

Asynchronous
(lazy)

Primary copy Update everywhere

synchronous
primary copy

synchronous
update everywhere

asynchronous
update everywhere

asynchronous
primary copy

The previous ideas can be combined into 4 different replication strategies:

©Gustavo Alonso. IKS. ETH Zürich 23

Replication Strategies
Sy

nc
hr

on
ou

s
A

s y
n c

hr
o n

ou
s

Advantages:
Updates do not need to be coordinated
No inconsistencies

Disadvantages:
Longest response time
Only useful with few updates
Local copies are can only be read

Advantages:
No inconsistencies
Elegant (symmetrical solution)

Disadvantages:
Long response times
Updates need to be coordinated

Advantages:
No coordination necessary
Short response times

Disadvantages:
Local copies are not up to date
Inconsistencies

Advantages:
No centralized coordination
Shortest response times

Disadvantages:
Inconsistencies
Updates can be lost (reconciliation)

Primary copy Update everywhere

©Gustavo Alonso. IKS. ETH Zürich 24

Replication (Ideal)

Synchronous
(eager)

Asynchronous
(lazy)

Primary copy Update everywhere

Globally correct
Remote writes

Globally correct
Local writes

Inconsistent reads Inconsistent reads
Reconciliation

©Gustavo Alonso. IKS. ETH Zürich 25

Replication (Practical)

Synchronous
(eager)

Asynchronous
(lazy)

Too Expensive
(usefulness?)

Too expensive
(does not scale)

Feasible Feasible in some
applications

Primary copy Update everywhere

©Gustavo Alonso. IKS. ETH Zürich 26

Summary - I
Replication is used for performance and fault tolerant purposes.
There are four possible strategies to implement replication solutions depending on
whether it is synchronous or asynchronous, primary copy or update everywhere.
Each strategy has advantages and disadvantages which are more or less obvious given
the way they work.
There seems to be a trade-off between correctness (data consistency) and performance
(throughput and response time).
The next step is to analyze these strategies in more detail to better understand how
they work and where the problems lie.

©Gustavo Alonso. IKS. ETH Zürich 27

Database Replication Strategies
Database environments
Managing replication
Technical aspects and correctness/performance issues of each replication strategy:

Synchronous - primary copy
Synchronous - update everywhere
Asynchronous - primary copy
Asynchronous - update everywhere

©Gustavo Alonso. IKS. ETH Zürich 28

Basic Database Notation
A user interacts with the database by
issuing read and write operations.
These read and write operations are
grouped into transactions with the
following properties:
Atomicity: either all of the

transaction is executed or nothing
at all.

Consistency: the transaction produces
consistent changes.

Isolation: transactions do not interfere
with each other.

Durability: Once the transaction
commits, its changes remain.

User

Database

BoT
r(x) r(y) r (z) w(x) w(y)

EoT

x y
z

Transaction

©Gustavo Alonso. IKS. ETH Zürich 29

Isolation
Isolation is guaranteed by a concurrency
control protocol.
In commercial databases, this is usually
2 Phase Locking (2PL):

conflicting locks cannot coexist
(writes conflict with reads and
writes on the same item)
Before accessing an item, the item
must be locked.
After releasing a lock, a
transaction cannot obtain any more
locks.

User A

Database

BoT
r(x) r(y) r (z) w(x) w(y)

EoT

x y

z

Transaction

Write-lock
user A

Write-lock
user A

Read-lock
user A

©Gustavo Alonso. IKS. ETH Zürich 30

Atomicity
A transaction must commit all its
changes.
When a transaction executes at various
sites, it must execute an atomic
commitment protocol, i.e., it must
commit at all sites or at none of them.
Commercial systems use 2 Phase
Commit:

A coordinator asks everybody
whether they want to commit
If everybody agrees, the
coordinator sends a message
indicating they can all commit

User

Database
A

BoT
r(x) r(y) r (z) w(x) w(y)

EoT

Transaction

Database
B

Database
C

x y z

©Gustavo Alonso. IKS. ETH Zürich 31

Transaction Manager
The transaction manager takes care of
isolation and atomicity.
It acquires locks on behalf of all
transactions and tries to come up with
a serializable execution, i.e., make it
look like the transactions were
executed one after the other.
If the transactions follow 2 Phase
Locking, serializability is guaranteed.
Thus, the scheduler only needs to
enforce 2PL behaviour. scheduler

Transactions from
different users

Operations from the
different transactions

2 Phase Locking
is enforced

Transactions are
serialized

©Gustavo Alonso. IKS. ETH Zürich 32

Managing Replication
When the data is replicated, we still
need to guarantee atomicity and
isolation.
Atomicity can be guaranteed by using 2
Phase Commit. This is the easy part.
The problem is how to make sure the
serialization orders are the same at all
sites, i.e., make sure that all sites do
the same things in the same order
(otherwise the copies would be
inconsistent). Scheduler A Scheduler B

©Gustavo Alonso. IKS. ETH Zürich 33

Managing Replication
To avoid this, replication protocols are
used.
A replication protocol specifies how
the different sites must be coordinated
in order to provide a concrete set of
guarantees.
The replication protocols depend on the
replication strategy (synchronous,
asynchronous, primary copy, update
everywhere).

Scheduler A Scheduler B

Replication

Protocol

©Gustavo Alonso. IKS. ETH Zürich 34

Replication Strategies

Synchronous
(eager)

Asynchronous
(lazy)

Primary copy Update everywhere

synchronous
primary copy

synchronous
update everywhere

asynchronous
update everywhere

asynchronous
primary copy

Now we can analyze the advantages and disadvantages of each strategy:

©Gustavo Alonso. IKS. ETH Zürich 35

Cost of Replication

0

10

20

30

40

50

60

0 0.1 0.3 0.5 0.7 0.9 1

System with
50 nodes

Available
CPU

ws
(replication

factor)

Assume a 50 node replicated system
where a fraction s of the data is
replicated and w represents the fraction
of updates made (ws = replication
factor)
Overall computing power of the system:

No performance gain with large ws
factor (many updates or many
replicated data items)
Reads must be local to get performance
advantages.

N
1 w s (N 1)+ ⋅ ⋅ −

©Gustavo Alonso. IKS. ETH Zürich 36

Synchronous - update everywhere
Assume all sites contain the same data.
READ ONE-WRITE ALL

Each sites uses 2 Phase Locking.
Read operations are performed locally.
Write operations are performed at all sites (using a distributed locking protocol).

This protocol guarantees that every site will behave as if there were only one database.
The execution is serializable (correct) and all reads access the latest version.

This simple protocol illustrates the main idea behind replication, but it needs to be
extended in order to cope with realistic environments:
Sites fail, which reduces the availability (if a site fails, no copy can be written).
Sites eventually have to recover (a recently recovered site may not have the latest
updates).

©Gustavo Alonso. IKS. ETH Zürich 37

Dealing with Site Failures
Assume, for the moment, that there are no communication failures. Instead of writing to

all copies, we could
WRITE ALL AVAILABLE COPIES

READ = read any copy, if time-out, read another copy.
WRITE = send Write(x) to all copies. If one site rejects the operation, then abort.
Otherwise, all sites not responding are “missing writes”.
VALIDATION = To commit a transaction

Check that all sites in “missing writes” are still down. If not, then abort the
transaction.
Check that all sites that were available are still available. If some do not respond,
then abort.

©Gustavo Alonso. IKS. ETH Zürich 38

Each site uses 2PL
Read operations are performed locally
Write operations involve locking all
copies of the data item (request a lock,
obtain the lock, receive an
acknowledgement)
The transaction is committed using
2PC
Main optimizations are based on the
idea of quorums (but all we will say
about this protocol also applies to
quorums)

SITE A SITE B SITE C

BOT

R(x)

W(x)
Lock Lock

Upd

Upd Upd

... ...

request

ack

change

Synchronous - Update Everywhere Protocol

©Gustavo Alonso. IKS. ETH Zürich 39

Response Time and Messages

centralized database update

T=

T=

replicated database update: 2N messages
2PC

The way replication takes place (one operation at a time),
increases the response time and, thereby, the conflict
profile of the transaction. The message overhead is too
high (even if broadcast facilities are available).

©Gustavo Alonso. IKS. ETH Zürich 40

The Deadlock Problem
Approximated deadlock rate:

if the database size remains constant, or

if the database size grows with the number
of nodes.
Optimistic approaches may result in
too many aborts.

TPS Action_ Time Actions N
4 DB_ Size

2 5 3

2
⋅ ⋅ ⋅

⋅

TPS Action_ Time Actions N
4 DB_ Size

2 5

2

⋅ ⋅ ⋅
⋅

A B C

BOT

R(x)

W(x)
Lock

D

Lock
W(x)

BOT

©Gustavo Alonso. IKS. ETH Zürich 41

Synchronous - update everywhere
Advantages:

No inconsistencies
Elegant (symmetrical solution)

Disadvantages:
Very high number of messages involved
Transaction response time is very long
The system will not scale because of deadlocks (as the number of
nodes increases, the probability of getting into a deadlock gets too
high)

Data consistency is guaranteed. Performance may be
seriously affected with this strategy. The system may also
have scalability problems (deadlocks). High fault tolerance.

©Gustavo Alonso. IKS. ETH Zürich 42

Synchronous - primary copy
Advantages:

Updates do not need to be coordinated
No inconsistencies, no deadlocks.

Disadvantages:
Longest response time
Only useful with few updates (primary copy is a bottleneck)
Local copies are almost useless
Not used in practice

Similar problems to those of Sync - update everywhere.
Including scalability problems (bottlenecks). Data
consistency is guaranteed. Fault tolerant.

©Gustavo Alonso. IKS. ETH Zürich 43

Async - primary copy protocol
Update transactions are executed at the
primary copy site
Read transactions are executed locally
After the transaction is executed, the
changes are propagated to all other
sites
Locally, the primary copy site uses 2
Phase Locking
In this scenario, there is no atomic
commitment problem (the other sites
are not updated until later)

SITE A SITE B SITE C

BOT

R(x)

W(x)

Upd

Upd Upd
... ...

change

Txn

EOT

R(x)

©Gustavo Alonso. IKS. ETH Zürich 44

Asynchronous - primary copy
Advantages:

No coordination necessary
Short response times (transaction is local)

Disadvantages:
Local copies are not up to date (a local read will not always include
the updates made at the local copy)
Inconsistencies (different sites have different values of the same data
item)

Performance is good (almost same as if no replication).
Fault tolerance is limited. Data inconsistencies arise.

©Gustavo Alonso. IKS. ETH Zürich 45

Async - update everywhere protocol
All transactions are executed locally
After the transaction is executed, the
changes are propagated to all other
sites
Locally, a site uses 2 Phase Locking
In this scenario, there is no atomic
commitment problem (the other sites
are not updated until later)
However, unlike with primary copy,
updates need to be coordinated

SITE A SITE B SITE C

BOT

W(x)

Upd Upd

EOT

BOT

W(x)

EOT

©Gustavo Alonso. IKS. ETH Zürich 46

Async / Update Everywhere

DB 1

DB 3

DB 2

Probability of needing reconciliation:

What does it mean to commit a
transaction locally? There is no
guarantee that a committed transaction
will be valid (it may be eliminated if
“the other value” wins).

TPS Action_ time Actions N
2 DB_ Size

2 3 3⋅ ⋅ ⋅
⋅X=3 X=5

©Gustavo Alonso. IKS. ETH Zürich 47

Reconciliation
Such problems can be solved using pre-arranged patterns:

Latest update win (newer updates preferred over old ones)
Site priority (preference to updates from headquarters)
Largest value (the larger transaction is preferred)

or using ad-hoc decision making procedures:
identify the changes and try to combine them
analyze the transactions and eliminate the non-important ones
implement your own priority schemas

©Gustavo Alonso. IKS. ETH Zürich 48

Asynchronous - update everywhere
Advantages:

No centralized coordination
Shortest response times

Disadvantages:
Inconsistencies
Updates can be lost (reconciliation)

Performance is excellent (same as no replication). High
fault tolerance. No data consistency. Reconciliation is
a tough problem (to be solved almost manually).

©Gustavo Alonso. IKS. ETH Zürich 49

Summary - II
We have seen the different technical issues involved with each replication
strategy
Each replication strategy has well defined problems (deadlocks,
reconciliation, message overhead, consistency) related to the way the
replication protocols work
The trade-off between correctness (data consistency) and performance
(throughput and response time) is now clear
The next step is to see how these ideas are implemented in practice

©Gustavo Alonso. IKS. ETH Zürich 50

Replication in Practice
Replication scenarios
On Line Transaction Processing (OLTP)
On Line Analytical Processing (OLAP)
Replication in Sybase
Replication in IBM
Replication in Oracle
Replication in Lotus Notes

©Gustavo Alonso. IKS. ETH Zürich 51

Replication Scenarios
In practice, replication is used in many different scenarios. Each one has
its own demands. A commercial system has to be flexible enough to
implement several of these scenarios, otherwise it would not be
commercially viable.
Database systems, however, are very big systems and evolve very slowly.
Most were not designed with replication in mind. Commercial solutions
are determined by the existing architecture, not necessarily by a sound
replication strategy. Replication is fairly new in commercial databases!
The focus on OLTP and OLAP determines the replication strategy in many
products.
From a practical standpoint, the trade-off between correctness and
performance seems to have been resolved in favor of performance.
It is important to understand how each system works in order to
determine whether the system will ultimately scale, perform well, require
frequent manual intervention ...

©Gustavo Alonso. IKS. ETH Zürich 52

OLTP vs. OLAP

updates

complex
queries

data gathering
and processing

data
Mart

online
DB

Knowledge
Information

Data
Warehouse

Data Mining

OLTP

OLAP

©Gustavo Alonso. IKS. ETH Zürich 53

OLTP

complex
queries

data
Mart

OLTP

OLAP

High performance (Txn/s)
High availability
High fault tolerance
Working with the latest data
On line

OLTP
online

DB

online
DB

©Gustavo Alonso. IKS. ETH Zürich 54

OLAP

online
DB

OLTP

data gathering
and processing

Data
Warehouse

complex
queries

Knowledge
Information

Data Mining

OLAP

data
Mart

Data storage
Data cross referencing
Decision support
Statistical analysis
Off line

©Gustavo Alonso. IKS. ETH Zürich 55

Commercial replication
When evaluating a commercial replication strategy, keep in mind:

The customer base (who is going to use it?).
The underlying database (what can the system do?).
What competitors are doing (market pressure).
There is no such a thing as a “better approach”.
The complexity of the problem.

Replication will keep evolving in the future, current systems may change
radically.

©Gustavo Alonso. IKS. ETH Zürich 56

Sybase Replication Server
(http://www.sybase.com)

Goal of replication: Avoid server bottlenecks by moving data to the
clients. To maintain performance, asynchronous replication is used
(changes are propagated only after the transaction commits). The changes
are propagated on a transaction basis (get the replicas up-to-date as
quickly as possible). Capture of changes is done “off-line”, using the log
to minimize the impact on the running server.
Applications: OLTP, client/server architectures, distributed database
environments.

©Gustavo Alonso. IKS. ETH Zürich 57

Sybase Replication Architecture
primary

data log

DATA
MANAGER

LOG
TRANSFER
MANAGER

REPLICATION
SERVER

REPLICATION
SERVER

DATA
MANAGER

replicated
data

asynchronous
stored procedure

synchronous
stored procedure

(2PC)

decoupled

change detection
wrapping

subscription
data change detection

updates

©Gustavo Alonso. IKS. ETH Zürich 58

Sybase Replication (basics)
Loose consistency (= asynchronous).
Primary copy.
PUSH model: replication takes place by
“subscription”. A site subscribes to
copies of data. Changes are propagated
from the primary as soon as they occur.
The goal is to minimize the time the
copies are not consistent but still
within an asynchronous environment
(updates are sent only after they are
committed).
Updates are taken from the log in
stable storage (only committed
transactions).
Remote sites update using special
stored procedures (synchronous or a
synchronous).
Persistent queues are used to store
changes in case of disconnection.

The Log Transfer Manager monitors the
log of Sybase SQL Server and notifies
any changes to the replication server. It
acts as a light weight process that
examines the log to detect committed
transactions (a wrapper). It is possible
to write your own Log Transfer Manager
for other systems. Usually runs in the
same system as the source database.
When a transaction is detected, its log
records are sent to the:
The Replication Server usually runs on
a different system than the database to
minimize the load. It takes updates,
looks who is subscribed to them and
send them to the corresponding
replication servers at the remote site.
Upon receiving these changes, a
replication server applies them at the
remote site.

©Gustavo Alonso. IKS. ETH Zürich 59

Sybase Replication (updates)
Primary copy. All updates must be done at the primary using either :

Synchronous stored procedures, which reside at the primary and are
invoked (RPC) by any site who wants to update. 2 Phase Commit is used.
Stored procedures for asynchronous transactions: invoked locally, but sent
asynchronously to the primary for execution. If the transaction fails
manual intervention is required to fix the problem.
It is possible to fragment a table and make different sites the primary
copy for each fragment.
It is possible to subscribe to selections of tables using WHERE clauses.

©Gustavo Alonso. IKS. ETH Zürich 60

IBM Data Propagator
(http://www.ibm.com/)

Goal: Replication is seen as part of the “Information Warehousing”
strategy. The goal is to provide complex views of the data for decision-
support. The source systems are usually highly tuned, the replication
system is designed to interfere as less as possible with them: replication
is asynchronous and there are no explicit mechanisms for updating.
Applications: OLAP, decision-support, data warehousing, data mining.

©Gustavo Alonso. IKS. ETH Zürich 61

IBM Replication (architecture)

DATA
MANAGER

CAPTURE
MVS

APPLY
PROGRAM

Replicated
data

APPLY
PROGRAM

data log

Primary data

UOW change
consistent

change

©Gustavo Alonso. IKS. ETH Zürich 62

IBM Data Propagator (basics)
Asynchronous replication.
No explicit update support (primary
copy, if anything).
PULL MODEL: (smallest interval 1
minute) the replicated data is
maintained by querying either the
primary data, the change table, the
consistent change table, or any
combination of the three. The goal is to
support sophisticated views of the data
(data warehousing). Pull model means
replication is driven by the recipient of
the replica. The replica must “ask” for
updates to keep up-to-date.
Updates are taken from the main
memory buffer containing log entries
(both committed and uncommitted
entries; this is an adjustable
parameter).

Updates are sent to the primary
(updates converted into inserts if tuple
has been deleted, inserts converted into
updates if tuple already exists, as in
Sybase). The system is geared towards
decision support, replication
consistency is not a key issue.
Sophisticated data replication is
possible (base aggregation, change
aggregation, time slices …)
Sophisticated optimizations for data
propagation (from where to get the
data).
Sophisticated views of the data
(aggregation, time slicing).
Capture/MVS is a separate address
space monitor, to minimize
interference it captures log records
from the log buffer area

©Gustavo Alonso. IKS. ETH Zürich 63

IBM Data Propagator
There are two key components in the

architecture:
Capture: analyzes raw log information
from the buffer area (to avoid I/O). It
reconstructs the logical log records and
creates a “change table” and a
“transaction table” (a dump of all
database activity).
Apply Program: takes information from
the database, the change table and the
transaction table to built “consistent
change table” to allow consistent
retrieval and time slicing. It works by
“refreshing” data (copies the entire
data source) or “updating” (copies
changes only). It allows very useful
optimizations (get the data from the
database directly, reconstruct, etc.).

The emphasis is on extracting information:
Data Propagator/2 is used to subscribe
and request data.
It is possible to ask for the state of
data at a given time (time slicing or
snapshots).
It is possible to ask for changes:

how many customers have been
added?
how many customers have been
removed?
how many customers were between
20 and 30 years old?

This is not the conventional idea of
replication!

©Gustavo Alonso. IKS. ETH Zürich 64

Oracle Symmetric Replication
(http://www.oracle.com)

Goals: Flexibility. It tries to provide a platform that can be tailored to as
many applications as possible. It provides several approaches to
replication and the user must select the most appropriate to the
application. There is no such a thing as a “bad approach”, so all of them
must be supported (or as many as possible)
Applications: intended for a wide range of applications.

©Gustavo Alonso. IKS. ETH Zürich 65

Oracle Replication (architecture)

DATA
MANAGER

read-only
snapshot

updatable
snapshot

deferred RPC
PUSH

PULL (periodically)

primary site

local queue
deferred RPC

deferred
RPC DATA

MANAGER

synchronous
PL/SQL 2PC

synchronous
copy

asynchronous
copies

trigger

©Gustavo Alonso. IKS. ETH Zürich 66

Oracle Replication
“DO-IT-YOURSELF” model supporting
almost any kind of replication (push
model, pull model), Dynamic
Ownership (the site designated as the
primary can change over time), and
Shared Ownership (update anywhere,
asynchronously).
One of the earliest implementations:
Snapshot. This was a copy of the
database. Refreshing was done by
getting a new copy.
Symmetric replication: changes are
forwarded at time intervals (push) or
on demand (pull).
Asynchronous replication is the default
but synchronous is also possible.
Primary copy (static / dynamic) or
update everywhere.

Readable Snapshots: A copy of the
database. Refresh is performed by
examining the log records of all
operations performed, determining the
changes and applying them to the
snapshot. The snapshot cannot be
modified but they are periodically
refreshed (complete/fast refreshes)
Writable Snapshots: fast-refreshable
table snapshots but the copy can be
updated (if changes are sent to the
master copy, it becomes a form of
asynchronous - update everywhere
replication).

©Gustavo Alonso. IKS. ETH Zürich 67

Oracle Replication (basics)
Replication is based on these two ideas:

Triggers: changes to a copy are
captured by triggers. The trigger
executes a RPC to a local queue and it
inserts the changes in the queue. These
changes take the form of an invocation
to a stored procedure at the remote
site. These triggers are “deferred” in
the sense that they work
asynchronously with respect to the
transaction
Queues: queues follow a FIFO
discipline and 2PC is used to guarantee
the call makes it to the queue at the
remote site. At the remote site, the
queue is read and the call made in the
order they arrive.

Dynamic ownership: It is possible to
dynamically reassign the “master copy”
to different sites. That is, the primary
copy can move around (doing it well, it
is then possible to always read and
write locally)
Shared ownership: (= update
everywhere!). Conflicts are detected by
propagating both the before and the
after image of data. When a conflict is
detected, there are several predefined
routines that can be automatically
called or the user can write and ad-hoc
routine to resolve the conflict
Synchronous, update everywhere: using
the sync -update everywhere protocol
previosuly discussed

©Gustavo Alonso. IKS. ETH Zürich 68

Replication in Lotus Notes (Domino)
Lotus Notes implements asynchronous (lazy), update every-where
replication in an epidemic environment.
Lotus Notes distinguishes between a replica and a copy (a snapshot). All
replicas have the same id. Each copy has its own id.
Lotus allows to specify what to replicate (in addition to replica stubs and
field level replication) to minimize overhead.
Replication conflicts are detected and some attempt is made at
reconciliation (user intervention is usually required).
Lotus Notes is a cooperative environment, the goal is data distribution
and sharing. Consistency is largely user defined and not enforced by the
system.

©Gustavo Alonso. IKS. ETH Zürich 69

Replication in Lotus Notes

database

forms views

D1 D2

F1 V1

database

forms views

D1 D2

F1 V1FULL REPLICA

database

forms views

D1 D2

F1 V1

database

forms views

D1

F1 V1
PARTIAL REPLICA

©Gustavo Alonso. IKS. ETH Zürich 70

Replication in Lotus Notes
Notes also allows to specify when to replicate …

.. and in which direction to replicate:

database

forms views

D1 D2

F1 V1

database

forms views

D1 D2

F1 V1
AUTOMATIC

MANUAL

BI-DIRECTIONAL

database

forms views

D1 D2

F1 V1

database

forms views

D1 D2

F1 V1

UNI-DIRECTIONAL

©Gustavo Alonso. IKS. ETH Zürich 71

Token Passing Protocol
Replication is used in many applications other than databases. For these

applications, there is a large number of protocols and algorithms that can
be used to guarantee “correctness”:
The token based protocol is used as an example of replication in
distributed systems to illustrate the problems of fault-tolerance and
starvation.

©Gustavo Alonso. IKS. ETH Zürich 72

Distributed Mutual Exclusion
The original protocol was proposed for distributed mutual exclusion. It can be used,
however, to maintain replicated data and to implement the notion of dynamic
ownership (Oracle replication).

In here, it will be used for the following:
Asynchronous, master copy (dynamic ownership)
The protocol will be used to locate the master copy
Requirements:

there is only one master copy at all times
deadlock free
fault-tolerant
starvation free

©Gustavo Alonso. IKS. ETH Zürich 73

Token Passing (model)
Working assumptions

Communications are by message passing
Sites are fail-stop or may fail to send and receive messages
Failed sites eventually recover (failure detection by time-out)
Network partitions may occur
No duplicate messages and FIFO delivery
Causality enforced by logical clocks (Lamport)

Happen Before Relation
(1) events in a process are ordered
(2) sending(m) receiving(m)
(3) if a b and b c,then a c

Clock condition
(1) each event has a timestamp
(2) succesive events have

increasing timestamps
(3) receiving(m) has a higher
timestamp than

sending(m)

©Gustavo Alonso. IKS. ETH Zürich 74

Basic Protocol (no failures)
Assume no communication or site failures
A node with the token is the master copy
Each site, s, has a pointer, Owner(s), indicating where that site believes the master
copy is located
The master copy updates locally
Other sites sent their updates following the pointer
When the master copy reassigns the token (the master copy moves to another site),
the ex-master copy readjusts its pointer so it points towards the new master copy
For correctness reasons, assume the master copy is never reassigned while updates are
taking place.

©Gustavo Alonso. IKS. ETH Zürich 75

Basic Protocol (owner)

Owner(s) = k

A

B

C

D

TOKEN

©Gustavo Alonso. IKS. ETH Zürich 76

Basic Protocol (update)

Owner(s) = k

C

D

A

B

UPD

©Gustavo Alonso. IKS. ETH Zürich 77

Basic Protocol (token change)

Owner(s) = k

A

B

C

D

©Gustavo Alonso. IKS. ETH Zürich 78

Basic Protocol (update)

Owner(s) = k

A

B

C

D

UPD

UPD

©Gustavo Alonso. IKS. ETH Zürich 79

Basic Protocol (token change)

Owner(s) = k

A

B

C

D

©Gustavo Alonso. IKS. ETH Zürich 80

Basic Protocol (update)

Owner(s) = k

A

B

C

D

UPD

UPD

UPD

©Gustavo Alonso. IKS. ETH Zürich 81

Basic Protocol (algorithms)
Requesting the master copy (s)

IF Owner(s) = s THEN
master copy already in s

ELSE
SEND(request) to Owner(s)
RECEIVE(Token)
Owner(s) = s

END (*IF*)

Receiving a request (q)

Receive (request(s))
IF Owner(q) = q THEN

Owner(q) = s
SEND(Token) to s

ELSE
SEND(request(s)) to Owner(q)

END (*IF*)

©Gustavo Alonso. IKS. ETH Zürich 82

Failures
If communication failures occur, the token may disappear while in transit (message is

lost).
First, the loss of the token must be detected
Second, the token must be regenerated
Third, after the regeneration, there must be only one token in the system (only one
master copy)

To do this, logical clocks are used:
OwnerTime(s) is a logical clock associated with the token, it indicates when site s
sent or received the token
TokenState(s) is the state of the shared resource (values associated with the token
itself)

©Gustavo Alonso. IKS. ETH Zürich 83

Token Loss Protocol
Assume bounded delay (if a message does not arrive after time t, it has been lost).
Sites do not fail
When a site sends the token, it sends along its own OwnerTime
When a site receives the token, it sets its OwnerTime to a value greater than that
received with the token
From here, it follows that the values of the OwnerTime variables along the chain of
pointers must increase
If, along the chain of pointers, there is a pair of values that is not increasing, the
token has been lost between these two sites and must be regenerated

©Gustavo Alonso. IKS. ETH Zürich 84

Token Loss Protocol

Owner(s) = k

C

D

A

B

OwnerTime(s)

1

1

0 0

0

©Gustavo Alonso. IKS. ETH Zürich 85

Detecting Token Loss

Owner(s) = k

A

B

C

D

OwnerTime(s)

1

0 0

2

2

©Gustavo Alonso. IKS. ETH Zürich 86

Detecting Token Loss

Owner(s) = k

A

B

C

D

OwnerTime(s)

1

0 0

2

2

©Gustavo Alonso. IKS. ETH Zürich 87

Detecting Token Loss

Owner(s) = k

A

B

C

D

OwnerTime(s)

1

0 0

2

UPD

UPD

UPD

0

1

2

©Gustavo Alonso. IKS. ETH Zürich 88

Regenerating the Token

Owner(s) = k

A

B

C

D

OwnerTime(s)

1

0 0

2

G
et

 T
ok

en

©Gustavo Alonso. IKS. ETH Zürich 89

Token Recovered

Owner(s) = k

A

B

C

D

OwnerTime(s)

1

0 3

2

3

©Gustavo Alonso. IKS. ETH Zürich 90

Token Loss (algorithm 1)
Request (s)
IF Owner(s) = s THEN

already master copy
ELSE

SEND(request(s),OwnerTime(s)) to Owner(s)
Receive(Token,TTime) on Timeout(ReqDelay) ABORT
Owner(s) = s
OwnerTime(s) = TTime + 1
TokenState = Token

END (*IF*)

©Gustavo Alonso. IKS. ETH Zürich 91

Token Loss (algorithm 2)

Receive (request(s),timestamp) FROM p
IF timestamp > OwnerTime(q) THEN (* TOKEN IS LOST *)

SEND(GetToken) TO p
Receive(Token,TTime) FROM p ON Timeout ABORT
Owner(q) = q
OwnerTime(q) = TTime + 1
TokenState = Token

END (*IF*)
IF Owner(q) <> q THEN

SEND(request(s),timestamp) TO Owner(q)
ELSE

Owner(q) = s
SEND(Token, OwnerTime(q)) TO s

END (*IF*)

©Gustavo Alonso. IKS. ETH Zürich 92

Site Failures
Sites failures interrupt the chain of pointers (and may also result in the token being
lost, if the failed site had the token)
In this case, the previous algorithm ABORTs the protocol
Instead of aborting, and to tolerate site failures, a broadcast algorithm can be used to
ask everybody and find out what has happened in the system
Two “states” are used

TokenReceived: the site has received the token
TokenLoss: a site determines that somewhere in the system there are p,q such
that Owner(p) = q and OwnerTime(p) > OwnerTime(q)

©Gustavo Alonso. IKS. ETH Zürich 93

Chain Loss due to Site Failure

Owner(s) = k

A

B

C

D

OwnerTime(s)

1

0 3

2

3

©Gustavo Alonso. IKS. ETH Zürich 94

Chain Loss due to Site Failure

Owner(s) = k

A

B

C

D

OwnerTime(s)

1

0 3

2

3

©Gustavo Alonso. IKS. ETH Zürich 95

Chain Loss due to Site Failure

Owner(s) = k

A

B

OwnerTime(s)

1

0

D

3
3

©Gustavo Alonso. IKS. ETH Zürich 96

Chain Loss due to Site Failure

Owner(s) = k

B

A

OwnerTime(s)0

1

UPD

UPD

0

1

TIMEOUT
D

3
3

©Gustavo Alonso. IKS. ETH Zürich 97

Token Loss due to Site Failure

Owner(s) = k

B

A

OwnerTime(s)
0

1
To

ke
n

?

Token ?

D

3
3Token ?

©Gustavo Alonso. IKS. ETH Zürich 98

Token Loss due to Site Failure

Owner(s) = k

B

A

OwnerTime(s)
0

1

Owner(A), OwnerTime(A)

D

3

3

©Gustavo Alonso. IKS. ETH Zürich 99

Chain Loss due to Site Failure

Owner(s) = k

A

OwnerTime(s)

1

B

4

4 D

3

©Gustavo Alonso. IKS. ETH Zürich 100

Detecting Token Loss in Others

Owner(s) = k

A

B

C

D

OwnerTime(s)

1

0 0

2

2

©Gustavo Alonso. IKS. ETH Zürich 101

Detecting Token Loss in Others

Owner(s) = k

A

B

C

D

OwnerTime(s)

1

0 0

2

UPD

UPD

UPD

0

1

2

©Gustavo Alonso. IKS. ETH Zürich 102

Detecting Token Loss in Others

Owner(s) = k

A

B

OwnerTime(s)

1

0

To
ke

n
?

Token ?

Token ?

C

D

0

2

©Gustavo Alonso. IKS. ETH Zürich 103

Detecting Token Loss in Others

Owner(s) = k

A

B

OwnerTime(s)

1

0

Owner(C), O
wnerTime(C)Owner(A),

OwnerTime(A)

Owner(D),OwnerTime(D)

C

D

0

2

©Gustavo Alonso. IKS. ETH Zürich 104

Regenerating Token in Others

Owner(s) = k

A

B

OwnerTime(s)

1

0
Regenerate Token

C

D

0

2

©Gustavo Alonso. IKS. ETH Zürich 105

Regenerating the Token

Owner(s) = k

A

B

C

D

OwnerTime(s)

1

0 0

2

G
et

 T
ok

en

©Gustavo Alonso. IKS. ETH Zürich 106

Token Recovered

Owner(s) = k

A

B

C

D

OwnerTime(s)

1

0 3

2

3

©Gustavo Alonso. IKS. ETH Zürich 107

Broadcast (algorithm)
SITE s: SEND (Bcast) TO all sites
COLLECT replies UNTIL TokenReceived OR TokenLoss
IF TokenReceived THEN

Owner(s) = s
OwnerTime = TTime + 1
TokenState = Token

END (*IF*)
IF TokenLoss THEN

DetectionTime = OwnerTime(q)
SEND(Regenerate, DetectionTime, p) TO q
RESTART

END (*IF*)

©Gustavo Alonso. IKS. ETH Zürich 108

Broadcast Request (algorithm)
Broadcast Request arrives at q from s:
Receive(Bcast)
IF Owner(q) = q THEN

Owner(q) = s
SEND(Token,OwnerTime(q)) TO s

ELSE
SEND(Owner(q),OwnerTime(q)) TO s

END (*IF*)

©Gustavo Alonso. IKS. ETH Zürich 109

Regenerate Token (algorithm)
A request to regenerate the token arrives at q:
Receive(Regenerate, DetectionTime, p)
IF OwnerTime(q) = DetectionTime THEN

SEND(GetToken) TO p
Receive(Token,TTime) FROM p ON Timeout ABORT
Owner(q) = q
OwnerTime(q) = TTime + 1
TokenState = Token

END (*IF*)

©Gustavo Alonso. IKS. ETH Zürich 110

Starvation
Starvation can occur if a request for the token keeps going around the system behind
the token but it always arrives after another request
One way to solve this problem is to make a list of all requests, order the requests by
timestamp and only grant a request when it is the one with the lowest timestamp in
the list
The list can be passed around with the token and each site can keep a local copy of the
list that will be merged with that arriving with the token (thereby avoiding that
requests get lost in the pointer chase)

	Introduction to Database Replication
	Database Replication
	Remote access to data?
	Replication
	How to replicate data?
	Synchronous Replication
	Synchronous Replication
	Synchronous Replication
	Synchronous Replication
	Synchronous Replication
	Synchronous Replication
	Asynchronous Replication
	Asynchronous Replication
	Asynchronous Replication
	Asynchronous Replication
	Asynchronous Replication
	Update Everywhere
	Update Everywhere
	Primary Copy
	Primary Copy
	Forms of replication
	Replication Strategies
	Replication Strategies
	Replication (Ideal)
	Replication (Practical)
	Summary - I
	Database Replication Strategies
	Basic Database Notation
	Isolation
	Atomicity
	Transaction Manager
	Managing Replication
	Managing Replication
	Replication Strategies
	Cost of Replication
	Synchronous - update everywhere
	Dealing with Site Failures
	Synchronous - Update Everywhere Protocol
	Response Time and Messages
	The Deadlock Problem
	Synchronous - update everywhere
	Synchronous - primary copy
	Async - primary copy protocol
	Asynchronous - primary copy
	Async - update everywhere protocol
	Async / Update Everywhere
	Reconciliation
	Asynchronous - update everywhere
	Summary - II
	Replication in Practice
	Replication Scenarios
	OLTP vs. OLAP
	OLTP
	OLAP
	Commercial replication
	Sybase Replication Server
	Sybase Replication Architecture
	Sybase Replication (basics)
	Sybase Replication (updates)
	IBM Data Propagator
	IBM Replication (architecture)
	IBM Data Propagator (basics)
	IBM Data Propagator
	Oracle Symmetric Replication
	Oracle Replication (architecture)
	Oracle Replication
	Oracle Replication (basics)
	Replication in Lotus Notes (Domino)
	Replication in Lotus Notes
	Replication in Lotus Notes
	Token Passing Protocol
	Distributed Mutual Exclusion
	Token Passing (model)
	Basic Protocol (no failures)
	Basic Protocol (owner)
	Basic Protocol (update)
	Basic Protocol (token change)
	Basic Protocol (update)
	Basic Protocol (token change)
	Basic Protocol (update)
	Basic Protocol (algorithms)
	Failures
	Token Loss Protocol
	Token Loss Protocol
	Detecting Token Loss
	Detecting Token Loss
	Detecting Token Loss
	Regenerating the Token
	Token Recovered
	Token Loss (algorithm 1)
	Token Loss (algorithm 2)
	Site Failures
	Chain Loss due to Site Failure
	Chain Loss due to Site Failure
	Chain Loss due to Site Failure
	Chain Loss due to Site Failure
	Token Loss due to Site Failure
	Token Loss due to Site Failure
	Chain Loss due to Site Failure
	Detecting Token Loss in Others
	Detecting Token Loss in Others
	Detecting Token Loss in Others
	Detecting Token Loss in Others
	Regenerating Token in Others
	Regenerating the Token
	Token Recovered
	Broadcast (algorithm)
	Broadcast Request (algorithm)
	Regenerate Token (algorithm)
	Starvation

