
Distributed Systems
SOAP, WSDL

Dr. Cesare Pautasso
Computer Science Department
Swiss Federal Institute of Technology (ETHZ)
pautasso@inf.ethz.ch
http://www.inf.ethz.ch/~pautasso

©IKS, ETH Zürich. 2

Standard Layers

TCP/IP
HTTP

HTML XML
SOAP

TCP/IP
HTTP

HTML XML

SOAP WSDL
UDDI

User
Interface

Messaging

Discovery

Description

©IKS, ETH Zürich. 3

The Web services stack

SAML
S/MIMEWS-SecuritySecurity

BTPBTPWS-
TransactionsTransactions

ebXML
registriesUDDIDiscovery

ebXML CPAContracts

BPMLBPMLBPEL4WS
WSFL/XLANG

Business
processes

WS-
CoordinationChoreography

ebXML
BPSSWSCI

WSCLConversations
DAML-S

WSELNonfunctional
description

ebXML CPPRDFWSDLDescription

ebXML MSSSOAPMessaging

ebXMLSemantic WebWSDL-based

HTTP, HTML and XML

©IKS, ETH Zürich. WWW 5

WWW basics
BROWSER

URL

response
page

INTERNET

WEB SERVER
map URL to CGI script
execute CGI script
get results back (stdout of CGI script)
prepare response page
send page to browser

CGI
script

Existing Middleware Infrastructure

The earliest implementations
were very simple and built
directly upon the existing systems
(client/server based on RPC, TP-
Monitors, or any other form of
middleware which allowed
interaction through a
programmable client)

the CGI script (or program) acted
as client in the traditional sense
(for instance using RPC)
The user clicked in a given URL
and the server invoked the script
corresponding to that URL
the script executed, produced the
results and passed them back to
the server (usually as the address
of a web page)
the server retrieved the page and
send it to the browser

Implemented
as a normal client

©IKS, ETH Zürich. WWW 6

HTTP as a communication protocol
HTTP was designed for exchanging
documents. It is almost like e-mail
(in fact, it uses RFC 822 compliant
mail headers and MIME types):
Example of a simplified request
(from browser to Web server):

GET /docu2.html HTTP/1.0
Accept: www/source
Accept: text/html
Accept: image/gif
User-Agent: Lynx/2.2 libwww/2.14

* a blank line *

If the “GET” looks familiar, it is not
a coincidence. The document
transfer protocol used is very
similar to ftp

File being requested
(docu2.html) and

version of the protocol

List of MIME types
accepted by the browser

Information about the
environment where the

browser is running

End of request

©IKS, ETH Zürich. WWW 7

HTTP server side response
Example of a response from
the server (to the request by
the browser):

HTTP/1.0 200 OK
Date: Wednesday, 02-Feb-94

23:04:12 GMT
Server: NCSA/1.1
MIME-version: 1.0
Last-modified: Monday, 15-

Nov-93 23:33:16 GMT
Content-type: text/html
Content-length: 2345

* a blank line *
<HTML><HEAD><TITLE> . . .

</TITLE> . . .etc.
</HTML>

Server is expected to convert
the data into a MIME type
specified in the request
(“Accept:” headers)

Protocol version, code indicating
request status (200=ok)

Date, server identification (type)
and format used in the request

MIME type of the document
being sent

Header for the document
(document length in bytes)

Document content

©IKS, ETH Zürich. WWW 8

Parameter passing
The introduction of forms for
allowing users to provide information
to a web server required to modify
HTML (and HTTP) but it provided a
more advanced interface than just
retrieving files:

POST /cgi-bin/post-query HTTP/1.0
Accept: www/source
Accept: text/html
Accept: video/mpeg
Accept: image/jpeg
...
Accept: application/postscript
User-Agent: Lynx/2.2 libwww/2.14
Content-type: application/x-www-

form-urlencoded
Content-length: 150

* a blank line *
&name = Cesare+Pautasso
&email= pautasso@inf.ethz.ch
...

POST request indicating the
CGI script to execute (post-query)
GET can be used but requires the

parameters to be sent as part of the
URL:

/cgi-bin/post-query?name=…&email=...

As before

Data provided through the form
and sent back to the server

©IKS, ETH Zürich. WWW 9

Contents and presentation
HTML is a markup language
designed to describe how a
document should be displayed
(the visual format of the
document).
HTML is one of the many markup
languages that exist, some of
them having being in use before
HTML even existed
Markup languages have been
developed and are used in many
industries (aircraft
manufacturing, semiconductors,
computer manuals). Markup
languages provide a standardized
grammar defining the meaning
of tags and their use
Markup languages use SGML, an
international text processing
standard from the 80’s, to define
tag sets and grammars

HTML is based on SGML, that is,
the tags and the grammar used
in HTML documents have been
defined using SGML.

<h2>Table of contents</h2>

1 A Gentle Introduction

to SGML
2 What's Special

about SGML?

2.1 Descriptive

Markup
2.2 Types of

Document
2.3 Data

Independence

3 Textual

Structure
4 SGML

Structures

4.1

Elements
4.2 Content

Models: An Example

©IKS, ETH Zürich. WWW 10

HTML and XML
HTML only provides primitives
for formatting a document with
a human user in mind
Using HTML there is no way to
indicate what are the contents
of a document (its semantics)
For instance, a query to
Amazon.com returns a book and
its price as an HTML document

a human has no problem
interpreting this
information once the
browser displays it
to parse the document to
automatically identify the
price of the book is much
more complicated and an
ad-hoc procedure (different
for every bookstore)

B2B applications require documents
that are much more structured so
that they can be easily parsed and
the information they contain
extracted
To cope with this requirement, the
XML standard was proposed
Important aspects of XML:

XML is not an extension to HTML
XML is a simplified version of SGML
that can be implemented in a Web
browser
XML is not a language but a “meta-
language” used to define markup
languages
XML tags have no standard
meaning that can be interpreted by
the browser. The meaning must be
supplied as an addition in the form
of a style sheet or program

©IKS, ETH Zürich. WWW 11

Data structures in XML

Mouse

Bovine

Gibbon
Orang

Gorilla

Human Chimp

<!ELEMENT trees (tree+)>
<!ELEMENT tree (branch,branch,branch?,length?)>
<!ELEMENT branch (node,length?)>
<!ELEMENT node ((branch,branch)|specie)>
<!ELEMENT length (#PCDATA)>
<!ELEMENT specie (#PCDATA)>

<?xml version="1.0" ?>
<!DOCTYPE trees SYSTEM "treefile.dtd">
<trees>
<tree>
<branch>
<node>
<specie>
'Mouse'
</specie>
</node>
<length>
0.792449
</length>
</branch>
<branch>
<node>
<branch>
<node>
<branch>
<node>
<branch>
<node>
<branch>
<node>
<specie>
'Human'
</specie>
</node>

...
</tree>
</trees>

('Mouse':0.792449,
(((('Human':0.105614,
'Chimp':0.171597
):0.074558,
'Gorilla':0.152701
):0.048980,
'Orang':0.303652
):0.121196,
'Gibbon':0.336296
):0.485445,
'Bovine':0.902183
):0.0;

DTD FileDTD File
XML FileXML File

Data to sendData to send

©IKS, ETH Zürich. WWW 12

DTDs and documents
The goal of XML is to provide a
standardized way to specify data
structures so that when data is
exchanged, it is possible to
understand what has been sent
The Document Type Definition
(DTD) specifies how the data
structure is described: processing
instructions, declarations,
comments, and elements
Using the DTD, the XML
document can be correctly
interpreted by a program by
simply parsing the document
using the grammar provided by
the DTD
The idea is similar to IDL except
that instead of defining
parameters as combinations of
standard types, a DTD describes
arbitrary documents as semi-
structured data

Using XML is possible to
exchange data through HTTP and
Web servers and process the data
automatically
Note that the use of XML reduces
the universality of the browser
since now a browser needs
additional programs to deal with
specific markup languages
developed using XML (somewhat
similar to plug-ins but more
encompassing in terms of
functionality)
However, this is not much of a
problem since the browser is for
humans while XML is for
automated processing
XML can be used as the
intermediate language for
marshalling/serializing
arguments when invoking
services across the Internet

©IKS, ETH Zürich. WWW 13

XML Schema
A different problem related to
accessing EAI systems through a
web interface is the
representation of relational data.
If HTML is used, the data is
formatted for presentation, not
for processing
If XML and DTDs are used, then
the structured is better suited for
processing but the processing is
ad-hoc (one can define any DTD
one wants)
XML Schema has been proposed
to allow database like query
processing over XML documents.
XML Schema is a data definition
language for XML documents
that allows to treat them as
relational data in a standardized
manner

What is different between XML
Schema and DTDs?. XML
Schema:

uses the same syntax as
XML (DTDs have a different
syntax)
provides a wider set of types
(similar to those in SQL)
allows to define complex
types from the basic types
supports key and referential
integrity constraints
can be used by query
languages (XQuery, for
instance) to parse XML
documents and treat them
as relational data
Can be used to specify the
data model used by a Web
service interface

RPC across the Web

©IKS, ETH Zürich. 15

Web Services and Client/Server

UDDI

SOAP

WSDL

The Web service architecture
proposed by IBM is based on
two key concepts:

architecture of existing
synchronous middleware
platforms
current specifications of
SOAP, UDDI and WSDL

The architecture has a
remarkable client/server flavor
It reflects only what can be
done with

SOAP (Simple Object
Access Protocol)
UDDI (Universal
Description and Discovery
Protocol)
WSDL (Web Services
Description Language)

©IKS, ETH Zürich. 16

Remote calls in RPC/DCE

©IKS, ETH Zürich. 17

Marshalling
and serializing

arguments

Remote calls in CORBA

Local Area Network

TCP/IP
socket

TCP/IP
socket

CORBA
runtime

Client stub Interface
repository

Client

MIDDLEWARE
ORB ORB

Implementation
repository Object

adapter

Skeleton

Service
(sever)

MIDDLEWARE

Identifying
and locating

services

©IKS, ETH Zürich. 18

Registry

Remote calls in DCOM

Marshalling
and serializing

arguments

Local Area Network

DCE
RPC

DCE
RPC

COM
runtime

Client proxy

Client

MIDDLEWARE
SCM SCM

Registry COM
runtime

Server stub

Service
(sever)

MIDDLEWARE

Identifying
and locating

services

SCM = Service Control
Manager

Simple Object Access Protocol
(SOAP)

©IKS, ETH Zürich. 20

stubs,
runtime
service
location

SOAP as RPC mechanism
CLIENT

call

SOAP system

Serialized
XML doc

Wrap doc
in HTTP

POST
request

HTTP
support
(web

client)

SERVER

service

SOAP system

Serialized
XML doc

Retrieve
doc from

HTTP
response

HTTP
support
(web

server)

stubs,
runtime
adapters

IN
TE

R
N

ETThis could be
RPC, CORBA,

DCOM, using SOAP
as protocol

©IKS, ETH Zürich. 21

Wire-protocols, XML and SOAP
RPC, CORBA, DCOM, even Java,
use different mechanisms and
protocols for communicating. All
of them map to TCP or UDP one
way or another but use different
syntax for marshalling, serializing
and packaging messages
The problem is that these
mechanisms are a legacy from
the time when communications
were mostly within LANs and
within homogeneous systems
Building a B2B environment
combining the systems of
different companies becomes
difficult because the protocols
available in RPC, CORBA, or DCOM
are too low level and certainly not
compatible among each other
(gateways are needed, etc.)

To address this problem, XML was
used to define SOAP (Simple Object
Access Protocol)
SOAP is conceptually quite simple:

RPC using HTTP
(at the client) turn an RPC call
into an XML document
(at the server) turn the XML
document into a procedure call
(at the server) turn the
procedure’s response into an
XML document
(at the client) turn the XML
document into the response to
the RPC
use XML to serialize the
arguments following the SOAP
specification

©IKS, ETH Zürich. 22

SOAP Envelope

SOAP header

Header Block

SOAP Body

Body Block

SOAP as an RPC wrapper
SOAP has been conceived as a way of
wrapping different protocols into an
XML document sent using HTTP (or
other mechanisms)
The structure of a SOAP message is very
simple: it contains headers and body.
The header and the body can be divided
into blocks so that the information sent
in them can be structured.
SOAP as a communication protocol is
also extremely simple: it only has two
types of interaction (request response
or notification). It also allows for client
initiated or server initiated exchanges
(mechanism is identical, the only
difference is who starts)

©IKS, ETH Zürich. 23

What is SOAP?
The W3C started working on
SOAP in 1999. The current W3C
recommendation is Version 1.2
SOAP covers the following four
main areas:

A message format for one-way
communication describing how a
message can be packed into an
XML document
A description of how a SOAP
message (or the XML document
that makes up a SOAP message)
should be transported using
HTTP (for Web based interaction)
or SMTP(for e-mail based
interaction)

A set of rules that must be followed
when processing a SOAP message
and a simple classification of the
entities involved in processing a
SOAP message. It also specifies what
parts of the messages should be read
by whom and how to react in case
the content is not understood
A set of conventions on how to turn
an RPC call into a SOAP message and
back as well as how to implement
the RPC style of interaction (how the
client makes an RPC call, this is
translated into a SOAP message,
forwarded, turned into an RPC call at
the server, the reply of the server
converted into a SOAP message, sent
to the client, and passed on to the
client as the return of the RPC call)

©IKS, ETH Zürich. 24

The background for SOAP
SOAP was originally conceived as the minimal possible infrastructure
necessary to perform RPC through the Internet:

use of XML as intermediate representation between systems
very simple message structure
mapping to HTTP for tunneling through firewalls and using the Web
infrastructure

The idea was to avoid the problems associated with CORBA’s IIOP/GIOP
(which fulfilled a similar role but using a non-standard intermediate
representation and had to be tunneled through HTTP anyway)
The goal was to have an extension that could be easily plugged on top of
existing middleware platforms to allow them to interact through the
Internet rather than through a LAN as in the original case. Hence the
emphasis on RPC from the very beginning (essentially all forms of
middleware use RPC at one level or another)
Eventually SOAP started to be presented as a generic vehicle for computer
driven message exchanges through the Internet and then it was open to
support interactions other than RPC and protocols other then HTTP. This
process, however, is only in its very early stages.

Structure of a SOAP Message

©IKS, ETH Zürich. 26

SOAP Messages
SOAP is based on message
exchanges
Messages are structured with an
envelope where the application
encloses the data to be sent
A message has two main parts:

header: which can be divided into
blocks
body: which can also be divided
into blocks

SOAP does not say what to do
with the header and the body, it
only states that the header is
optional and the body is
mandatory
Use of header and body, however,
is implicit. The body is for
application level data. The header
is for infrastructure level data

SOAP Envelope

SOAP header

Header Block

SOAP Body

Body Block

©IKS, ETH Zürich. 27

For the XML fans (SOAP, body only)

<SOAP-ENV:Envelope
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

<SOAP-ENV:Body>
<m:GetLastTradePrice xmlns:m="Some-URI">

<symbol>DIS</symbol>
</m:GetLastTradePrice>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

From the: Simple Object Access Protocol (SOAP) 1.1. ©W3C Note 08 May 2000

XML name space identifier for SOAP envelope
XML name space identifier for SOAP serialization

©IKS, ETH Zürich. 28

SOAP example, header and body
<SOAP-ENV:Envelope

xmlns:SOAP-ENV=
"http://schemas.xmlsoap.org/soap/envelope/"

SOAP-ENV:encodingStyle=
"http://schemas.xmlsoap.org/soap/encoding/"/>

<SOAP-ENV:Header>
<t:Transaction

xmlns:t="some-URI"
SOAP-ENV:mustUnderstand="1">

5
</t:Transaction>

</SOAP-ENV:Header>

<SOAP-ENV:Body>
<m:GetLastTradePrice xmlns:m="Some-URI">

<symbol>DEF</symbol>
</m:GetLastTradePrice>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Fr
om

 th
e:

 S
im

pl
e

O
bj

ec
t A

cc
e s

s P
ro

to
co

l (
SO

AP
) 1

.1.
 ©

W
3C

 N
ot

e
08

 M
a y

 2
00

0

©IKS, ETH Zürich. 29

The SOAP header
The header is intended as a generic place holder for information that is
not necessarily application dependent (the application may not even
be aware that a header was attached to the message).
Typical uses of the header are: coordination information, identifiers
(e.g., for transactions), security information (e.g., certificates)
SOAP provides mechanisms to specify who should deal with headers
and what to do with them. For this purpose it includes:

SOAP actor attribute: who should process that particular header
entry (or header block). The actor can be either: none, next,
ultimateReceiver. None is used to propagate information that does
not need to be processed. Next indicates that a node receiving the
message can process that block. ultimateReceiver indicates the
header is intended for the final recipient of the message
mustUnderstand attribute: with values 1 or 0, indicating whether it
is mandatory to process the header. If a node can process the
message (as indicated by the actor attribute), the mustUnderstand
attribute determines whether it is mandatory to do so.
SOAP 1.2 adds a relay attribute (forward header if not processed)

©IKS, ETH Zürich. 30

The SOAP body
The body is intended for the application specific data contained in the
message
A body entry (or a body block) is syntactically equivalent to a header
entry with attributes actor= ultimateReceiver and mustUnderstand = 1
Unlike for headers, SOAP does specify the contents of some body
entries:

mapping of RPC to a collection of SOAP body entries
the Fault entry (for reporting errors in processing a SOAP message)

The fault entry has four elements (in 1.1):
fault code: indicating the class of error (version, mustUnderstand,
client, server)
fault string: human readable explanation of the fault (not intended
for automated processing)
fault actor: who originated the fault
detail: application specific information about the nature of the
fault

©IKS, ETH Zürich. 31

SOAP Fault element (v 1.2)
In version 1.2, the fault element is specified in more detail. It must
contain two mandatory sub-elements:

Code: containing a value (the code for the fault) and possibly a
subcode (for application specific information)
Reason: same as fault string in 1.1

and may contain a few additional elements:
detail: as in 1.1
node: the identification of the node producing the fault (if absent,
it defaults to the intended recipient of the message)
role: the role played by the node that generated the fault

Errors in understanding a mandatory header are responded using a
fault element but also include a special header indicating which one o f
the original headers was not understood.

©IKS, ETH Zürich. 32

Message processing
SOAP specifies in detail how messages must be processed (in
particular, how header entries must be processed)

Each SOAP node along the message path looks at the role
associated with each part of the message
There are three standard roles: none, next, or ultimateReceiver
Applications can define their own roles and use them in the
message
The role determines who is responsible for each part of a message

If a block does not have a role associated to it, it defaults to
ultimateReceiver
If a mustUnderstand flag is included, a node that matches the role
specified must process that part of the message, otherwise it must
generate a fault and do not forward the message any further
SOAP 1.2 includes a relay attribute. If present, a node that does not
process that part of the message must forward it (i.e., it cannot remove
the part)
The use of the relay attribute, combined with the role next, is useful for
establishing persistence information along the message path (like
session information)

©IKS, ETH Zürich. 33

From TRPC to SOAP messages

SOAP Envelope

SOAP header

Transactional
context

SOAP Body

Input param 1

Input param 2

Name of Procedure

RPC Request

SOAP Envelope

SOAP header

SOAP Body

Return parameter

Transactional
context

RPC Response (one of the two)

SOAP Envelope

SOAP header

SOAP Body

Fault entry

Transactional
context

Mapping SOAP to a transport protocol

©IKS, ETH Zürich. 35

SOAP and HTTP
A binding of SOAP to a transport
protocol is a description of how a
SOAP message is to be sent using
that transport protocol
The typical binding for SOAP is HTTP
SOAP can use GET or POST. With
GET, the request is not a SOAP
message but the response is a SOAP
message, with POST both request
and response are SOAP messages
(in version 1.2, version 1.1 mainly
considers the use of POST).
SOAP uses the same error and
status codes as those used in HTTP
so that HTTP responses can be
directly interpreted by a SOAP
module

SOAP EnvelopeSOAP Envelope
SOAP header

Transactional
context

SOAP Body

Input parameter 1

Input parameter 2

Name of Procedure

HTTP POST

©IKS, ETH Zürich. 36

In XML (a request)
POST /StockQuote HTTP/1.1
Host: www.stockquoteserver.com
Content-Type: text/xml; charset="utf-8"
Content-Length: nnnn
SOAPAction: "GetLastTradePrice"

<SOAP-ENV:Envelope
xmlns:SOAP-ENV=
"http://schemas.xmlsoap.org/soap/envelope/"
SOAP-ENV:encodingStyle=
"http://schemas.xmlsoap.org/soap/encoding/">
<SOAP-ENV:Body>
<m:GetLastTradePrice xmlns:m="Some-URI">

<symbol>DIS</symbol>
</m:GetLastTradePrice>
</SOAP-ENV:Body>

</SOAP-ENV:Envelope>Fr
om

 th
e:

 S
im

pl
e

O
bj

ec
t A

cc
es

s P
ro

to
co

l (
SO

AP
) 1

.1.
 ©

 W
3C

 N
ot

e
0 8

 M
ay

 2
00

0

©IKS, ETH Zürich. 37

In XML (the response)
HTTP/1.1 200 OK
Content-Type: text/xml; charset="utf-8"
Content-Length: nnnn

<SOAP-ENV:Envelope
xmlns:SOAP-ENV=
"http://schemas.xmlsoap.org/soap/envelope/"
SOAP-ENV:encodingStyle=
"http://schemas.xmlsoap.org/soap/encoding/"/>
<SOAP-ENV:Body>
<m:GetLastTradePriceResponse xmlns:m="Some-URI">
<Price>34.5</Price>
</m:GetLastTradePriceResponse>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Fr
om

 th
e:

 S
im

pl
e

O
bj

ec
t A

cc
es

s P
ro

to
co

l (
SO

AP
) 1

.1.
 ©

 W
3C

 N
ot

e
0 8

 M
ay

 2
00

0

©IKS, ETH Zürich. 38

SOAP EnvelopeSOAP Envelope
SOAP header

Transactional
context

SOAP Body

Input parameter 1

Input parameter 2

Name of Procedure

HTTP POST

SOAP EnvelopeSOAP Envelope
SOAP header

Transactional
context

SOAP Body

Return parameter

HTTP Acknowledgement

SERVICE REQUESTER SERVICE PROVIDER

RPC call

H
T
T
P

en
gi
ne

SOAP
engine

Procedure

H
T
T
P

en
gi
ne

SOAP
engine

All together

©IKS, ETH Zürich. 39

SOAP Summary
SOAP, in its current form, provides
a basic mechanism for:

encapsulating messages into
an XML document
mapping the XML document
with the SOAP message into
an HTTP request
transforming RPC calls into
SOAP messages
simple rules on how to
process a SOAP message
(rules became more precise
and comprehensive in v1.2 of
the specification)

SOAP is a very simple protocol
intended for transferring data
from one middleware platform to
another. In spite of its claims to
be open (which are true), current
specifications and are very tied to
RPC and HTTP.

SOAP takes advantage of the
standardization of XML to
resolve problems of data
representation and serialization
(it uses XML Schema to
represent data and data
structures, and it also relies on
XML for serializing the data for
transmission). As XML becomes
more powerful and additional
standards around XML appear,
SOAP can take advantage of
them by simply indicating what
schema and encoding is used as
part of the SOAP message.
Current schema and encoding
are generic but soon there will
be vertical standards
implementing schemas and
encoding tailored to a particular
application area (e.g., the efforts
around EDI)

Web Services Description Language
(WSDL)

©IKS, ETH Zürich. 41

What is WSDL?
The Web Services Description Language specification is in version 1.1
(March 2001) and currently under revision (v2.0 is in the working draft
stage, August 2004)
WSDL 1.1 discusses how to describe the different parts that comprise a
Web service interface

the type system used to describe the service data model (XML Schema)
the messages involved in the interaction with the service
the individual operations composed of 4 possible message exchange
patterns
the sets of operations that constitute a service
the mapping to a transport protocol for the messages
the location where the service provider resides
groups of locations that can be used to access the same service

It also includes specification indicating how to bind WSDL to the SOAP,
HTTP (POST/GET) and MIME protocols

©IKS, ETH Zürich. 42

WSDL as an IDL
WSDL can be best understood when we approach it as an XML version of
an IDL that also covers the aspects related to integration through the
Internet and the added complexity of Web services
An IDL in conventional middleware and enterprise application integration
platforms has several purposes:

description of the interfaces of the services provided (e.g., RPC)
serve as an intermediate representation for bridging heterogeneity by
providing a mapping of the native data types to the intermediate
representation associated to the IDL in question
serve as the basis for development through an IDL compiler that
produces stubs and libraries that can be use to develop the application

A conventional IDL does not include information such as:
location of the service (implicit in the platform and found through
static or dynamic binding)
different bindings (typically an IDL is bound to a transport protocol)
sets of operations (since an interface defines a single access point and
there is no such a thing as a sequence of operations involved in the
same service)

©IKS, ETH Zürich. 43

IDL (Interface Definition Language)
All RPC systems have a language
that allows to describe services in
an abstract manner (independent
of the programming language
used). This language has the
generic name of IDL (e.g., the IDL of
SUN RPC is called XDR)
The IDL allows to define each
service in terms of their names, and
input and output parameters (plus
maybe other relevant aspects).
An interface compiler is then used
to generate the stubs for clients
and servers (rpcgen in SUN RPC). It
might also generate procedure
headings that the programmer can
then used to fill out the details of
the implementation.

Given an IDL specification, the
interface compiler performs a variety
of tasks:
generates the client stub procedure
for each procedure signature in the
interface. The stub will be then
compiled and linked with the client
code
Generates a server stub. It can also
create a server main, with the stub
and the dispatcher compiled and
linked into it. This code can then be
extended by the designer by writing
the implementation of the
procedures
It might generate a *.h file for
importing the interface and all the
necessary constants and types

©IKS, ETH Zürich. 44

Elements of WSDL 1.1
WSDL document

Types (type information for the document, e.g., XML Schema)

Message 1 Message 4Message 3Message 2

Operation 1 Operation 3Operation 2

Message 6Message 5

Port Type (abstract service)

binding 1

port 1

binding 2

port 2

binding 3

port 3

binding 4

port 4

Service (the interface in all
its available implementations)

Ab
st

ra
ct

 d
es

cr
ip

tio
n

of
 th

e
se

rv
ic

e
Co

nc
re

te
 d

es
cr

ip
tio

n
of

 th
e

se
rv

ic
e

©IKS, ETH Zürich. 45

Elements of WSDL 2.0
WSDL document

Types (type information for the document, e.g., XML Schema)

Message 1 Message 4Message 3Message 2

Operation 1 Operation 3Operation 2

Message 6Message 5

Interface (abstract service)

binding 1

endpoint 1

binding 2

endpoint 2

binding 3

endpoint 3

binding 4

endpoint 4

Service (the interface in all
its available implementations)

Ab
st

ra
ct

 d
es

cr
ip

tio
n

of
 th

e
se

rv
ic

e
Co

nc
re

te
 d

es
cr

ip
tio

n
of

 th
e

se
rv

ic
e

©IKS, ETH Zürich. 46

Types in WSDL
The types in WSDL are used to
specify the contents of the
messages (normal messages and
fault messages) that will be
exchanged as part of the
interactions with the Web service
The type system is typically based
on XML Schema (structures and
data types) - support is
mandatory for all WSDL
processors
An extensibility element can be
used to define a schema other
than XML Schema

©IKS, ETH Zürich. 47

Types in WSDL (Example)
<element name="PO" type="tns:POType"/>
<complexType name="POType">

<all>
<element name="id" type="string”/>
<element name="name" type="string"/>
<element name="items">

<complexType>
<all>

<element name="item" type="tns:Item" minOccurs="0" maxOccurs="unbounded"/>
</all>

</complexType>
</element>

</all>
</complexType>
<complexType name="Item">

<all>
<element name="quantity" type="int"/>
<element name="product" type="string"/>

</all>
</complexType>
<element name="Invoice" type="tns:InvoiceType"/>
<complexType name="InvoiceType">

<all>
<element name="id" type="string"/>

</all>
</complexType>

PURCHASE ORDER TYPE

ITEM TYPE

INVOICE TYPE

From Web Services Description Language (WSDL) 1.1 W3C Note 15 March 2001

©IKS, ETH Zürich. 48

Messages and Faults
Messages have a name that identifies
them throughout the XML document.
Messages are divided into parts, each
of them being a data structure
represented in XML. Each part must
have a type (basic or complex types,
previously declared in the WSDL
document).
A WSDL message element matches
the contents of the body of a SOAP
message. By looking at the types and
looking at the message, it is possible
to build a SOAP message that
matches the WSDL description (and
this can be done automatically since
the description is XML based and the
types also supported by SOAP)
A message does not define any form
of interaction, it is just a message

<message name="PO">
<part name="po" element="tns:PO"/>
<part name="invoice" element="tns:Invoice"/>

</message> Fr
om

 W
eb

 S
er

vi
ce

s D
es

cr
ip

tio
n

La
ng

ua
ge

 (W
SD

L)
 1.

1 W
3C

 N
ot

e
15

 M
ar

ch
 2

00
1

In WSDL 1.0, the structure of a
“message” is explicitly defined, listing
all of its parts.
In WSDL 2.0, a “message reference
component” is defined as part of an
operation and contains three
elements :

Message label (indicating the
message pattern used for the
message)
Direction (whether it is an
inbound or outbound message)
Message element (the actual
contents of the message
expressed in terms of the types
previously defined)

Faults are a special kind of message
used to report errors

1.0

©IKS, ETH Zürich. 49

Operations
Operations provide the first level of
context for the messages. In WSDL
1.0, there are four types of
operations:

one-way: the client send a
message to the server
request-response: the client
sends a request, the server
replies with a response
Solicit-response: the server
sends a message and the
client replies
Notification: the server
sends a message

ONE-WAY:
<wsdl:operation name=”Purchase">

<wsdl:input name=”Order" message=”PO"/>
</wsdl:operation>

Fr
om

 W
eb

 S
er

vi
ce

s D
es

cr
ip

tio
n

La
ng

ua
ge

 (W
SD

L)
 1.

1 W
3C

 N
ot

e
15

 M
ar

ch
 2

00
1

REQUEST-RESPONSE:
<wsdl:operation name=”Purchase”>
<wsdl:input name=”Order" message=”PO"/>
<wsdl:output name=”Confirm" message=”Conf"/>
<wsdl:fault name=”Error" message=”POError"/>

</wsdl:operation>

In WSDL 2.0, an operation is a set of
messages and faults. The
sequencing and number of
messages in the operation is
determined by the message
exchange pattern
The style of an operation
distinguishes between RPC-like
behavior, document oriented
message exchange or (in 2.0) set-
and get- of attributes
Operations can be annotated with
features and properties (e.g.,
reliability, security, routing)

©IKS, ETH Zürich. 50

Port Types
A Port Type corresponds to
the abstract definition of a
Web service (abstract
because it does not specify
any information about
where the service resides or
what protocols are used to
invoke the Web service)
The Port Type is simply a list
of operations that can be
used in that Web service
Operations are not defined
by themselves but only as
part of a PortType
In WSDL 2.0 Port Types have
been renamed to Interfaces
(which also support
inheritance)

<message name="m1">
<part name="body" element="tns:GetCompanyInfo"/>

</message>

<message name="m2">
<part name="body" element="tns:GetCompanyInfoResult"/>
<part name="docs" type="xsd:string"/>
<part name="logo" type="tns:ArrayOfBinary"/>
</message>

<portType name="pt1">
<operation name="GetCompanyInfo">

<input message="m1"/>
<output message="m2"/>

</operation>
</portType>

Fr
om

 W
eb

 S
er

vi
ce

s D
es

cr
ip

tio
n

La
ng

ua
ge

 (W
SD

L)
 1.

1 W
3C

 N
ot

e
15

 M
ar

ch
 2

00
1

©IKS, ETH Zürich. 51

Bindings and ports
A binding defines message formats
and protocol details for the
operations and messages of a given
Port Type
A binding corresponds to a single
Port Type (obvious since it needs to
refer to the operations and
messages of the Port Type)
A Port Type can have several
bindings (thereby providing several
access channels to the same
abstract service)
The binding is extensible with
elements that allow to specify
mappings of the messages and
operations to any format or
transport protocol. In this way
WSDL is not protocol specific.

A port specifies the address of a
binding, i.e., how to access the
service using a particular protocol
and format
Ports can only specify one address
and they should not contain any
binding information
The port is often specified as part of
a service rather than on its own

©IKS, ETH Zürich. 52

Bindings and Ports (example)
<binding name="b1" type="tns:pt1">

<operation name="GetCompanyInfo">
<soap:operation soapAction="http://example.com/GetCompanyInfo"/>

<input>
<soap:body use="literal"/>

</input>
<output>

<mime:multipartRelated>
<mime:part>

<soap:body parts="body" use="literal"/>
</mime:part>
<mime:part>

<mime:content part="docs" type="text/html"/>
</mime:part>
<mime:part>

<mime:content part="logo" type="image/gif"/>
<mime:content part="logo" type="image/jpeg"/>

</mime:part>
</mime:multipartRelated>

</output>
</operation>

</binding>
<service name="CompanyInfoService">

<port name="CompanyInfoPort"binding="tns:b1">
<soap:address location="http://example.com/companyinfo"/>

</port>
</service>

Fr
om

 W
eb

 S
er

vi
ce

s D
es

cr
ip

tio
n

La
ng

ua
ge

 (W
SD

L)
 1.

1 W
3C

 N
ot

e
15

 M
ar

ch
 2

00
1

©IKS, ETH Zürich. 53

Services
Services group a collections of ports together and therefore become the
complete definition of the service as seen by the outside:

a service supports several protocols (it has several bindings)
access to the service under a given protocol is through a
particular address (specified in the ports of each binding)
the operations and messages to exchange are defined in the
Port Type

Ports that are part of the same service may not communicate with each
other
Ports that are part of the same service are considered as alternatives all of
them with the same behavior (determined by the Port Type) but reachable
through different protocols

©IKS, ETH Zürich. 54

Elements of WSDL
WSDL document

Types (type information for the document, e.g., XML Schema)

Message 1 Message 4Message 3Message 2

Operation 1 Operation 3Operation 2

Message 6Message 5

Port Type (abstract service)

Interface
binding 1

port 1

Interface
binding 2

port 2

Interface
binding 3

port 3

Interface
binding 4

port 4

Service (the actual service in all
its available implementations)

Ab
st

ra
ct

 d
es

cr
ip

tio
n

of
 th

e
se

rv
ic

e
Co

nc
re

te
 d

es
cr

ip
tio

n
of

 th
e

se
rv

ic
e

©IKS, ETH Zürich. 55

WSDL example (1)
<?xml version="1.0"?>

<definitions name="StockQuote“ targetNamespace="http://example.com/stockquote.wsdl"
xmlns:tns="http://example.com/stockquote.wsdl“
xmlns:xsd="http://www.w3.org/2000/10/XMLSchema"
xmlns:xsd1="http://example.com/stockquote.xsd“
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/" xmlns="http://schemas.xmlsoap.org/wsdl/">

<message name="GetTradePriceInput">
<part name="tickerSymbol" element="xsd:string"/>
<part name="time" element="xsd:timeInstant"/>

</message>

<message name="GetTradePriceOutput">
<part name="result" type="xsd:float"/>

</message>

<portType name="StockQuotePortType">
<operation name="GetTradePrice">

<input message="tns:GetTradePriceInput"/>
<output message="tns:GetTradePriceOutput"/>

</operation>
</portType>

Fr
om

 W
eb

 S
er

vi
ce

s D
es

cr
ip

tio
n

La
ng

ua
ge

 (W
SD

L)
 1.

1 W
3C

 N
ot

e
15

 M
ar

ch
 2

00
1

©IKS, ETH Zürich. 56

WSDL example (2)
<binding name="StockQuoteSoapBinding" type="tns:StockQuotePortType">

<soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>
<operation name="GetTradePrice">

<soap:operation soapAction="http://example.com/GetTradePrice"/>
<input>

<soap:body use="encoded" namespace="http://example.com/stockquote"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

</input>
<output>

<soap:body use="encoded" namespace="http://example.com/stockquote"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

</output>
</operation>>

</binding>

<service name="StockQuoteService">
<documentation>My first service</documentation>
<port name="StockQuotePort" binding="tns:StockQuoteBinding">

<soap:address location="http://example.com/stockquote"/>
</port>

</service>
</definitions>

Fr
om

 W
eb

 S
er

vi
ce

s D
es

cr
ip

tio
n

La
ng

ua
ge

 (W
SD

L)
 1.

1 W
3C

 N
ot

e
15

 M
ar

ch
 2

00
1

