Physikalische Grundlagen und Verfahren

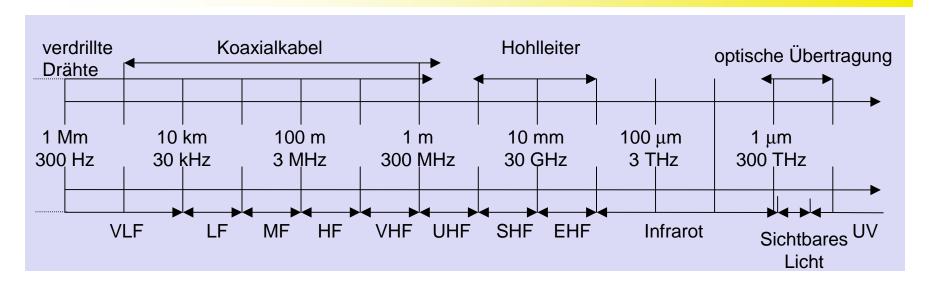
Seminar Mobile Computing 10. April 2000 Tom Eicher

Zusammenfassung der Folien von Prof. J. Schiller (Kapitel 2 & 3), Insitut für Informatik, Freie Universität Berlin

http://www.inf.fu-berlin.de/inst/ag-tech/

Inhalt

Technische Grundlagen



- □ Signalausbreitung □ Frequenzen
- Modulation □ Antennen

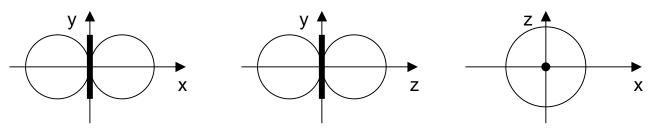
Media Access – Multiplexing

- □ Vergleich mit Festnetz
- □ Multiplextechniken. Aufteilung nach:
 - Frequenz - Raum (Zellen)
 - Code - Zeit

Frequenzbereiche für die Kommunikation

- Frequenzbänder von Regierungsstellen kontrolliert und lizenziert (FCC, ITU)
- Zusammenhang zwischen Frequenz und Wellenlänge:

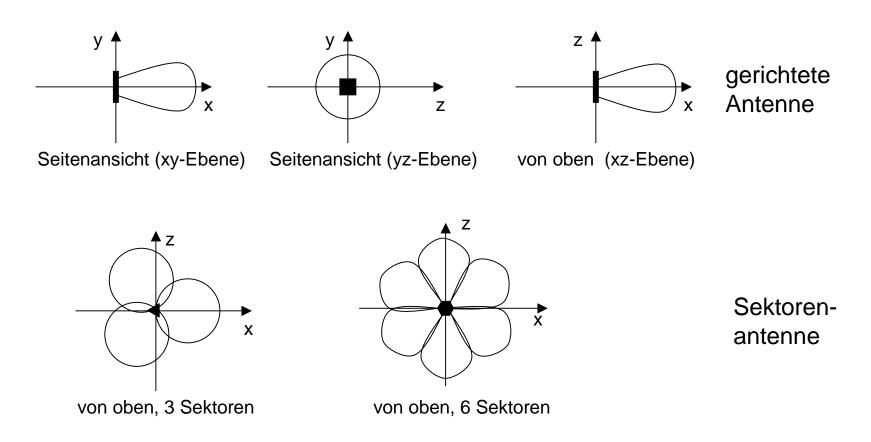
$$\lambda = c/f$$


mit Wellenlänge λ , Lichtgeschwindigkeit c \cong 3x108m/s, Frequenz f

Antennen: einfache Dipole

Abmessung einer Antenne ist proportional zur Wellenlänge

Beispiel: Richtdiagramm eines einfachen Dipols


Seitenansicht (xy-Ebene)

Seitenansicht (yz-Ebene) von oben (xz-Ebene)

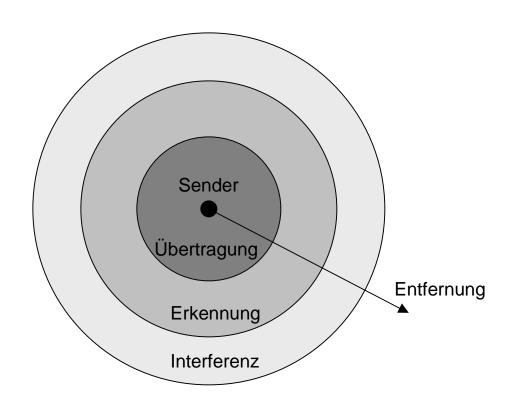
einfacher Dipol

Antennen: gerichtet und mit Sektoren

Häufig eingesetzte Antennenarten für direkte Mikrowellenverbindungen und Basisstationen für Mobilfunknetze (z.B. Ausleuchtung von Tälern und Straßenschluchten)

Signalausbreitungsbereiche

Übertragungsbereich


- □ Kommunikation möglich
- □ niedrige Fehlerrate

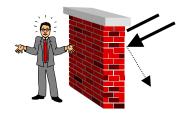
Erkennungsbereich

- □ Signalerkennung möglich
- □ keine Kommunikation möglich

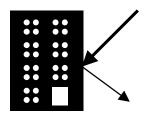
Interferenzbereich

- □ Signal kann nicht detektiert werden
- □ Signal trägt zum Hintergrundrauschen bei

Signalausbreitung


Ausbreitung im freien Raum grundsätzlich geradlinig (wie Licht)

Empfangsleistung nimmt mit 1/d² ab

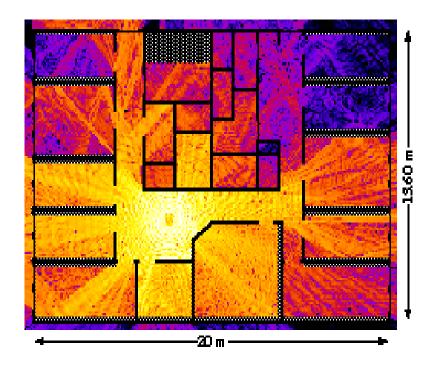

(d = Entfernung zwischen Sender und Empfänger)

Empfangsleistung wird außerdem u.a. beeinflußt durch

- Freiraumdämpfung (frequenzabhängig)
- Abschattung durch Hindernisse
- Reflektion an großen Flächen
- Streuung (scattering) an kleinen Hindernissen
- Beugung (diffraction) an scharfen Kanten

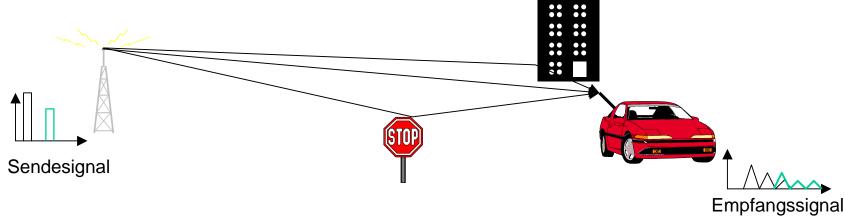
Abschattung

Reflektion



Streuung

Beugung


Praxisbeispiele

Mehrwegeausbreitung

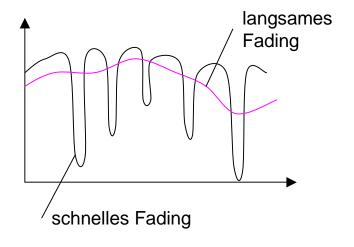
Signal kommt aufgrund von Reflektion, Streuung und Beugung auf mehreren Wegen beim Empfänger an

Signal wird zeitlich gestreut (time dispersion)

→ Interferenz mit Nachbarsymbolen

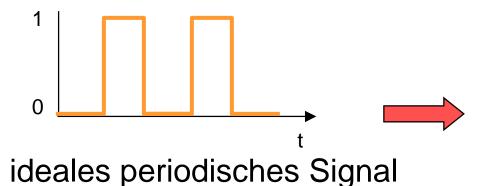
Direkte und phasenverschobene Signalanteile werden empfangen

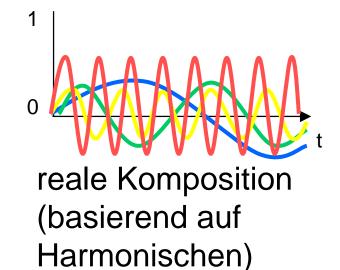
→ je nach Phasenlage abgeschwächtes Signal


Auswirkungen der Mobilität

Übertragungskanal ändert sich mit dem Ort der Mobilstation und der Zeit

- □ Übertragungswege ändern sich
- unterschiedliche Verzögerungsbreite der Einzelsignale
- → kurzzeitige Einbrüche in der Empfangsleistung (schnelles Fading)


Zusätzlich ändern sich


- Entfernung von der Basisstation
- □ Hindernisse in weiterer Entfernung
- → langsame Veränderungen in der (durchschnittlichen) Empfangsleistung (langsames Fading)

Fourier Repräsentation periodischer Signale

$$g(t) = \frac{1}{2}c + \sum_{n=1}^{\infty} a_n \sin(2\pi n f t) + \sum_{n=1}^{\infty} b_n \cos(2\pi n f t)$$

Modulation

Digitale Modulation

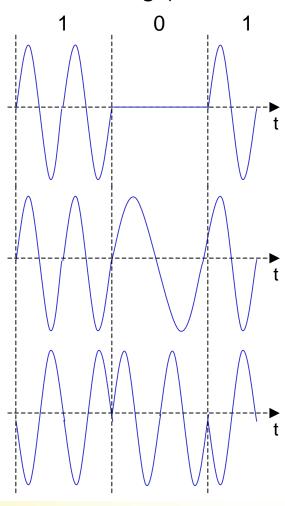
- digitale Daten werden in eine analoges (Basisband-) Signal umgesetzt
- □ Amplitudenmodulation (AM)
- □ Frequenzmodulation (FM)
- □ Phasenmodulation (PM)
- Unterschiede in Effizienz und Robustheit

Analoge Modulation

□ verschieben des Basisbandsignals auf die Trägerfrequenz

Motivation

- \square kleinere Antennen (z.B. $\lambda/4$)
- □ Frequenzmultiplex
- Mediencharakteristika


Digitale Modulationstechniken

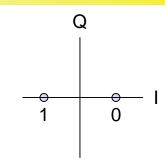
Modulation bei digitalen Signalen auch als Umtastung (Shift

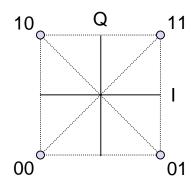
Keying) bezeichnet

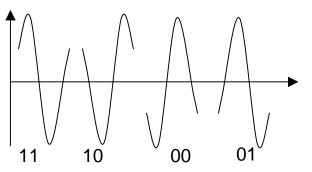
- □ technisch einfach
- benötigt wenig Bandbreite
- □ störanfällig
- □ Frequenzmodulation (FSK):
 - □ größere Bandbreite
- □ Phasenmodulation (PSK):
 - □ komplexe Demodulation
 - □ relativ störungssicher

Fortgeschrittene PSK-Verfahren

BPSK (Binary Phase Shift Keying):

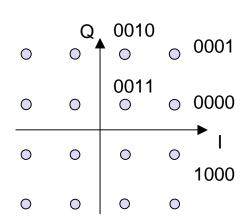

- □ Bitwert 0: Sinusförmiges Signal
- □ Bitwert 1: negatives Sinussignal
- einfachstes Phasentastungsverfahren
- □ spektral ineffizient
- □ robust, in Satellitensystemen benutzt


QPSK (Quaternary Phase Shift Keying):

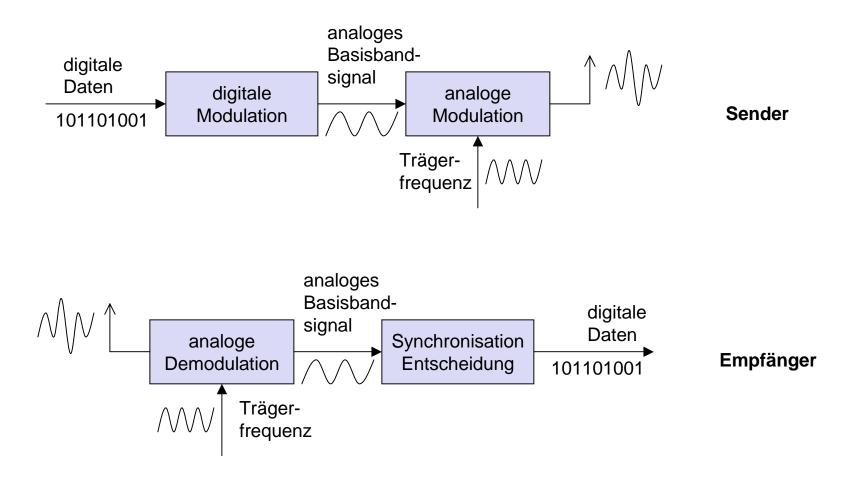

- □ 2 Bits werden in ein Symbol codiert
- Symbol entspricht phasenverschobenem Sinussignal
- weniger Bandbreite als bei BPSK benötigt
- □ komplexer

Oft Übertragung der relativen Phasenverschiebung (weniger Bitfehler)

□ DQPSK in z.B. IS-136, PHS


Quadraturamplitudenmodulation

Quadraturamplitudenmodulation: kombiniertes Amplituden- und Phasenmodulationsverfahren


- Möglichkeit, n Bits in ein Symbol zu kodieren
- □ 2ⁿ diskrete Stufen, n=2 entspricht QPSK
- □ Bitfehlerrate steigt mit n, aber weniger Bitfehler als bei vergleichbaren PSK-Verfahren

Beispiel: 16-QAM (4 Bits entspr. einem Symbol)

Die Symbole 0011 und 0001 haben gleiche Phase und unterschiedliche Amplitude. 0000 und 1000 haben unterschiedliche Phase und gleiche Amplitude.

Modulation und Demodulation

Inhalt

Technische Grundlagen

- □ Frequenzen □ Signalausbreitung
- □ Antennen □ Modulation

Media Access - Multiplexing

- □ Vergleich mit Festnetz
- □ Multiplextechniken. Aufteilung nach:
 - Raum (Zellen) Frequenz
 - Zeit Code

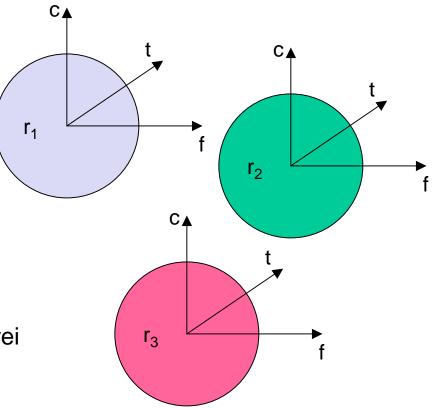
Multiplexing

Ziel: Mehrfachnutzung des gemeinsamen Mediums

Multiplexen in 4 Dimensionen:

- \square Raum (r_i)
- □ Frequenz (f)
- □ Zeit (t)
- □ Code (c)

Wichtig: Genügend grosse Schutzabstände nötig!

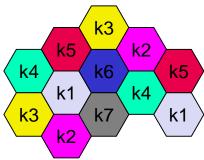

Raummultiplexing (SDM)

Vorteile der Zellenstruktur:

- weniger Sendeleistung notwendig
- □ robuster gegen Ausfälle
- □ überschaubarere Ausbreitungsbedingungen

Probleme:

- □ Netzwerk zum Verbinden der Basisstationen
- □ Handover (Übergang zwischen zwei Zellen) notwendig
- □ Störungen in andere Zellen
- □ Konzentration in bestimmten Bereichen



GSM: Zellen 500m bis 35km

Zellenplanung

Frequenzen können nur bei genügend großem Abstand der Zellen bzw. der Basisstationen wiederverwendet werden

Modell mit 7 Frequenzbereichen:

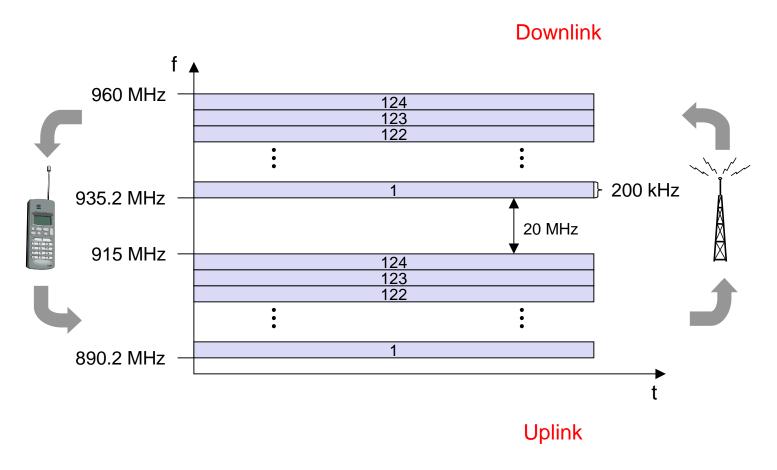
Feste Kanalzuordnung:

- □ bestimmte Menge von Kanälen fest gewisser Zelle zugeordnet
- □ Problem: Wechsel in Belastung der Zellen

Dynamische Kanalzuordnung:

- □ Kanäle einer Zelle werden nach bereits zugeordneten Kanälen der benachbarten Zellen gewählt
- mehr Kapazität in Gebieten mit höherer Nachfrage
- □ auch Zuordnung aufgrund von Interferenzmessungen möglich

Frequenzmultiplexing (Frequency Division Multiplex – FDM)

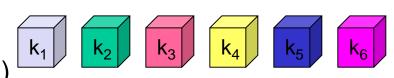

Vorteile:

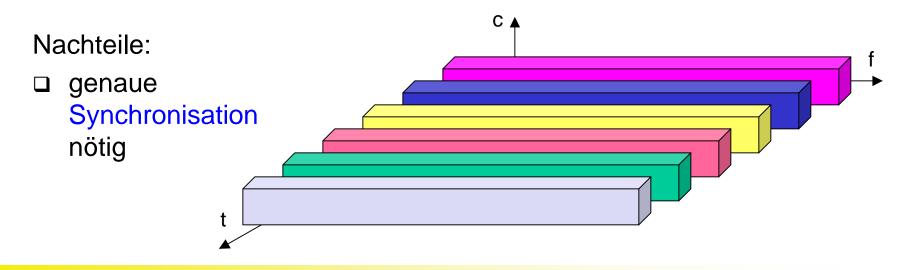
- keine dynamische Koordination nötig
- auch für analoge Signale

Nachteile: C A Bandbreitenverschwendung bei ungleichmäßiger Belastung unflexibel Frequenzen sind rar

FDD (Frequency Division Duplex)

- am Beispiel GSM

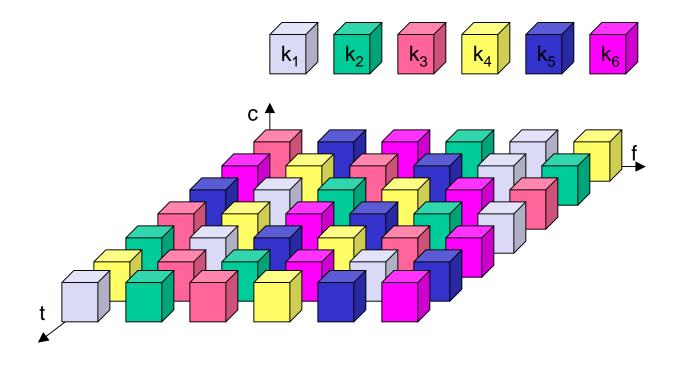



Zeitmultiplexing (Time Division Multiplex – TDM)

Kanal belegt gesamten Frequenzraum für einen gewissen Zeitabschnitt

Vorteile:

- in einem Zeitabschnitt nur ein Träger auf dem Medium
- Flexibilität (dynamische Zuordnung)



Zeit- und Frequenzmultiplexing

Kombination der oben genannten Verfahren

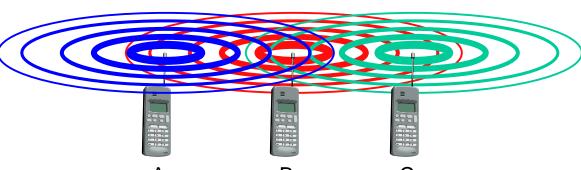
Beispiel: GSM

Medienzugriffsverfahren (MAC) - Motivation

Können Medienzugriffsverfahren von Festnetzen übernommen werden?

Beispiel CSMA/CD

- □ Carrier Sense Multiple Access with Collision Detection
- □ Senden, sobald das Medium frei ist, hören, ob eine Kollision stattfand (ursprüngliches Verfahren im Ethernet IEEE802.3)

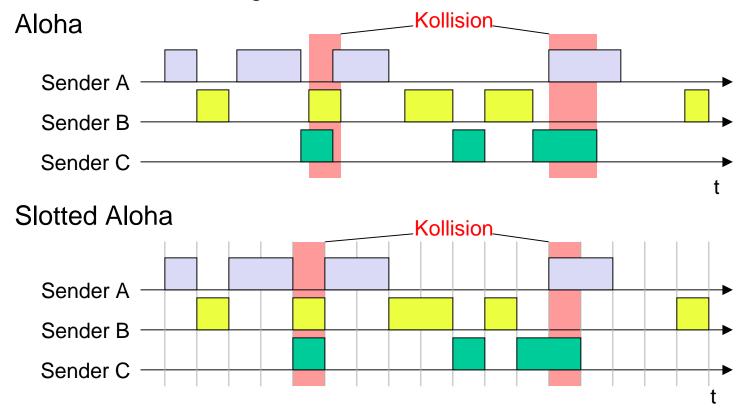

Probleme in drahtlosen Netzen

□ Signalstärke nimmt quadratisch mit der Entfernung ab

Motivation - Versteckte und "ausgelieferte" Endgeräte

Verstecktes Endgerät (Hidden Terminal)

- □ A sendet zu B, C empfängt A nicht mehr
- □ C will zu B senden, Medium ist für C frei (CS versagt)
- □ Kollision bei B, A sieht dies nicht (CD versagt)
- □ A ist "versteckt" für C


"Ausgeliefertes" Endgerät (Exposed Terminal)^B

- □ B sendet zu A, C will zu irgendeinem Gerät senden (nicht A oder B)
- □ C muß warten, da CS ein "besetztes" Medium signalisiert
- □ da A aber außerhalb der Reichweite von C ist, ist dies unnötig
- □ C ist B "ausgeliefert"

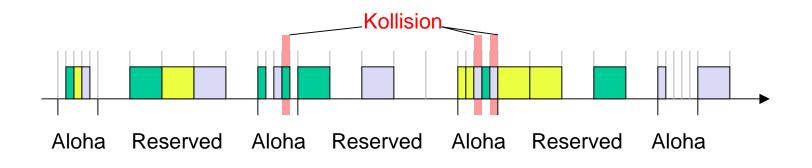
Aloha/Slotted Aloha

Verfahren

- □ zufällig, nicht zentral gesteuert, Zeitmultiplex
- □ Slotted Aloha führt zusätzlich gewisse Zeitschlitze ein, in denen ausschließlich gesendet werden darf.

DAMA - Demand Assigned Multiple Access

Ausnutzung des Kanals bei Aloha (18%) und Slotted Aloha (36%) nur sehr gering (Annahme von Poisson-Verkehr).


Mit Hilfe von Vorabreservierung kann dies auf 80% erhöht werden.

- □ Sender *reserviert* einen zukünftigen Zeitschlitz
- innerhalb dieses Zeitschlitzes kann dann ohne Kollision sofort gesendet werden
- dadurch entsteht aber auch eine h\u00f6here Gesamtverz\u00f6gerung
- □ typisch für Satellitenkommunikation
- Synchronisation notwendig

Zugriffsverfahren DAMA: Explizite Reservierung

Explizite Reservierung:

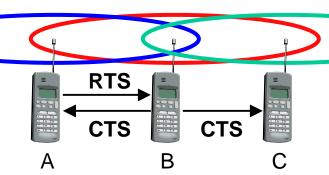
- □ Zwei Modi:
 - ALOHA-Modus für die Reservierung: In einem weiter aufgegliederten Zeitschlitz kann eine Station Zeitschlitze reservieren.
 - Reserved-Modus für die Übertragung von Daten in erfolgreich reservierten Zeitschlitzen (keine Kollision mehr möglich).
- □ Wesentlich ist, dass die in den einzelnen Stationen geführten Listen über Reservierungen miteinander zu jedem Punkt übereinstimmen, daher muss mitunter synchronisiert werden.

MACA - Kollisionsvermeidung

MACA (Multiple Access with Collision Avoidance) setzt kurze Signalisierungspakete zur Kollisionsvermeidung ein

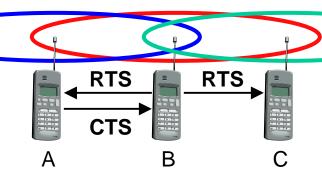
- □ RTS (request to send): Anfrage eines Senders an einen Empfänger bevor ein Paket gesendet werden kann
- □ CTS (clear to send): Bestätigung des Empfängers sobald er empfangsbereit ist

Signalisierungspakete beinhalten:


- □ Senderadresse
- □ Empfängeradresse
- □ Paketgröße

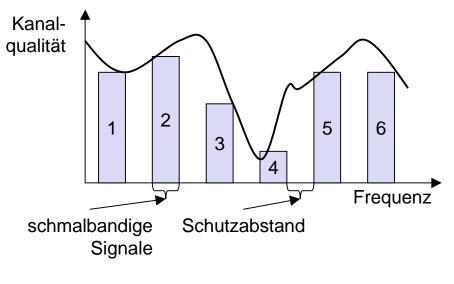
Auch in IEEE802.11 (Wave LAN) als DFWMAC (Distributed Foundation Wireless MAC) im Einsatz

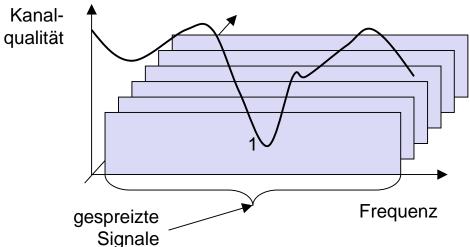
MACA - Beispiele


Vermeidung des Problems versteckter Endgeräte

- □ A und C wollen zu B senden
- □ A sendet zuerst RTS
- □ C wartet, da es das CTS von B hört

Vermeidung des Problems "ausgelieferter" Endgeräte


- □ B will zu A, C irgendwohin senden
- □ C wartet nun nicht mehr unnötig, da es nicht das CTS von A empfängt

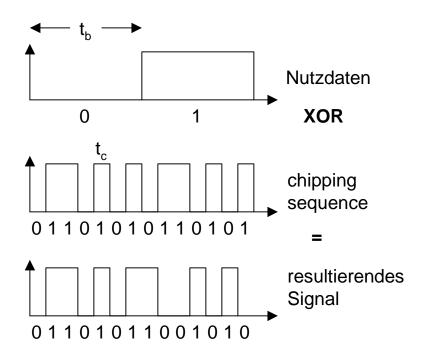

Codemultiplex

Alle Teilnehmer können zur selben Zeit im selben Frequenzabschnitt senden Vorteile: □ Bandbreiteneffizienz □ keine Koordination und Synchronisation notwendig □ Schutz gegen Störungen □ grosser Coderaum (z.B. 2³²) □ alle Stationen auf derselben Frequenz Nachteile: □ Benutzerdatenrate begrenzt □ Leistungssteuerung notwendig Realisierung: Spreizspektrumtechnik

Spreizen und frequenzselektives Fading

schmalbandige Kanäle

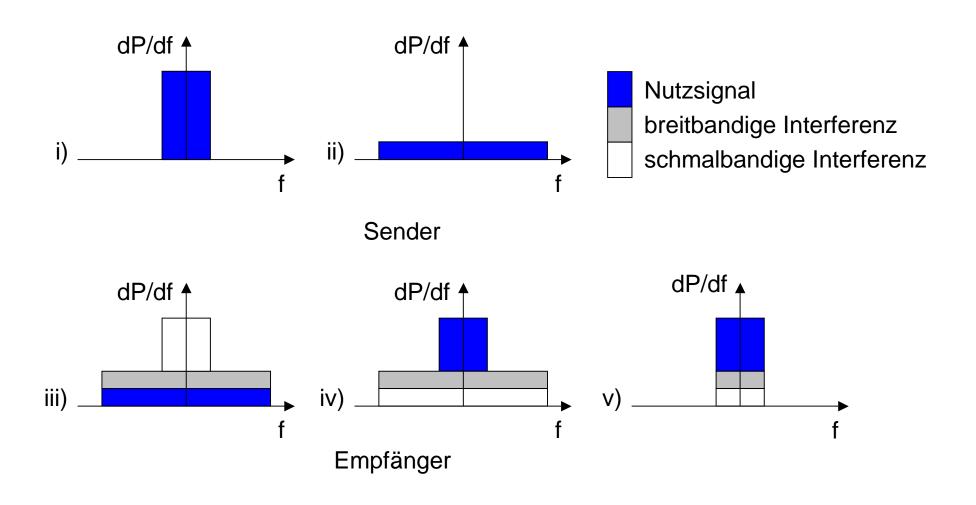
gespreizte Kanäle

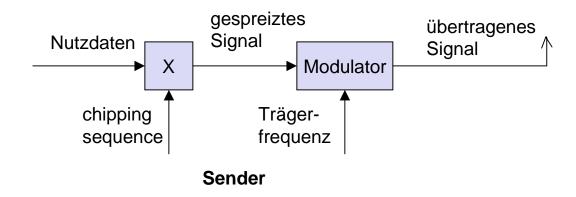

Zwei Alternativen:

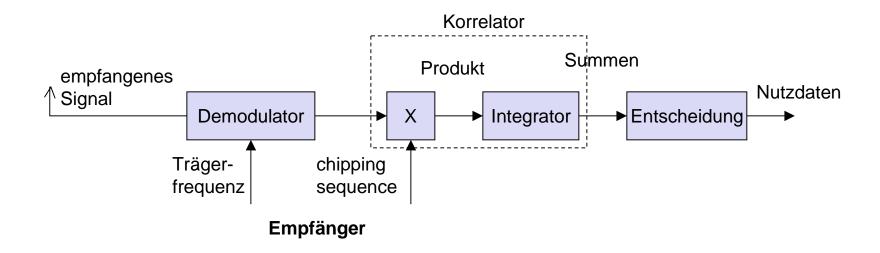
- Direct Sequence
- Frequency Hopping

DSSS (Direct Sequence Spread Spectrum) I

XOR des Signals mit einer Pseudozufallszahl (chipping sequence)


 □ viele chips pro Bit (z.B. 128) resultiert in einer höheren Bandbreite des Signals


t_b: Bitdauer


t_c: chip Dauer

Auswirkungen von Spreizen und Interferenz

DSSS (Direct Sequence Spread Spectrum) II

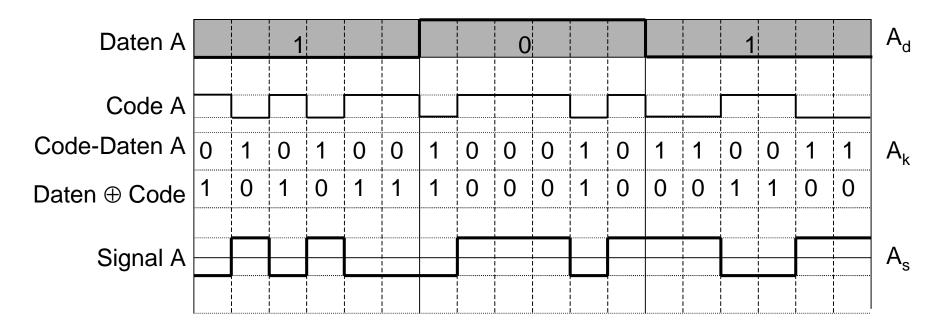
CDMA in der Theorie

Sender A

- □ sendet $A_d = 1$, Schlüssel $A_k = 010011$ (setze: "0"= -1, "1"= +1)
- □ Sendesignal $A_s = A_d * A_k = (-1, +1, -1, -1, +1, +1)$

Sender B

- □ sendet $B_d = 0$, Schlüssel $B_k = 110101$ (setze: "0"= -1, "1"= +1)
- □ Sendesignal $B_s = B_d * B_k = (-1, -1, +1, -1, +1, -1)$

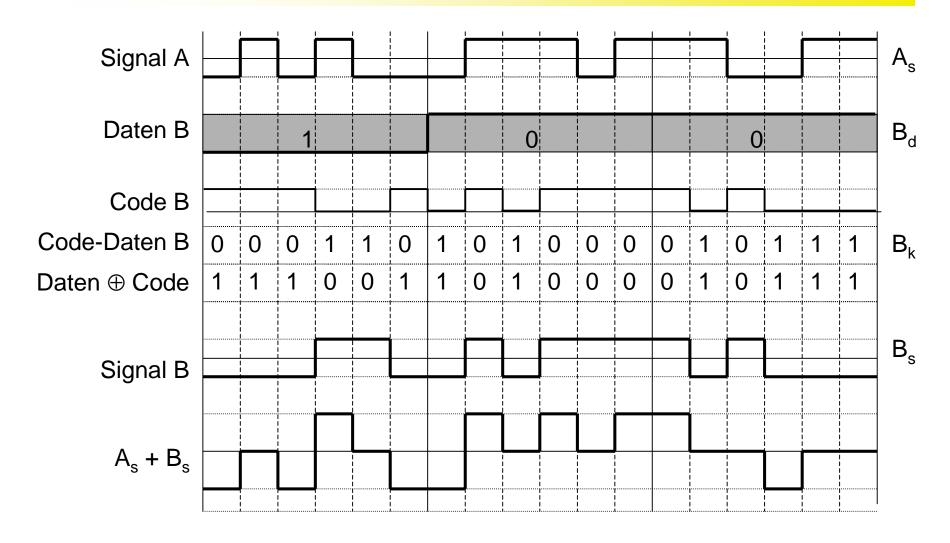

Beide Signale überlagern sich additiv in der Luft

- □ Störungen hier vernachlässigt (Rauschen etc.)
- \Box A_s + B_s = (-2, 0, 0, -2, +2, 0)

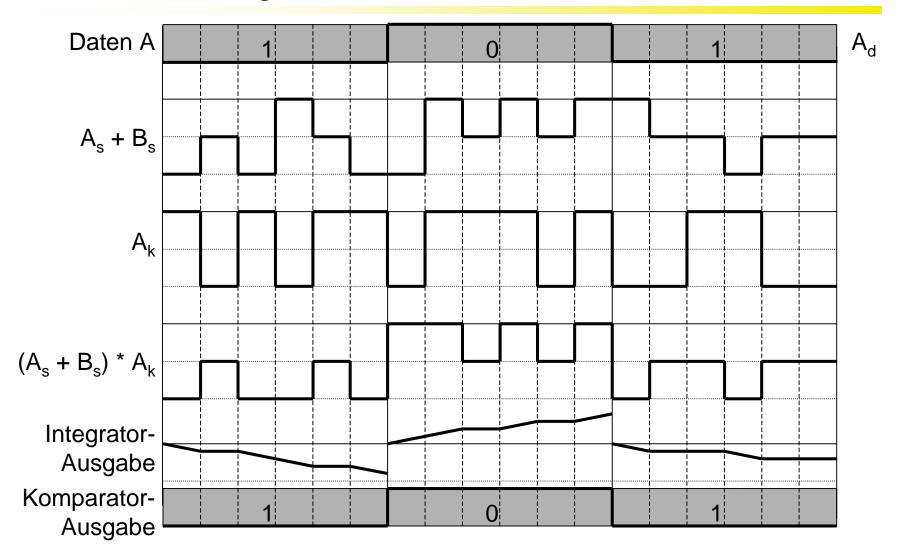
Empfänger will Sender A hören

- □ wendet Schlüssel A_k bitweise an (inneres Produkt)
 - $A_e = (-2, 0, 0, -2, +2, 0) \cdot A_k = 2 + 0 + 0 + 2 + 2 + 0 = 6$
 - Ergebnis ist größer 0, daher war gesendetes Bit eine "1"
- analog B
 - $B_e = (-2, 0, 0, -2, +2, 0) \cdot B_k = -2 + 0 + 0 2 2 + 0 = -6$, also "0"

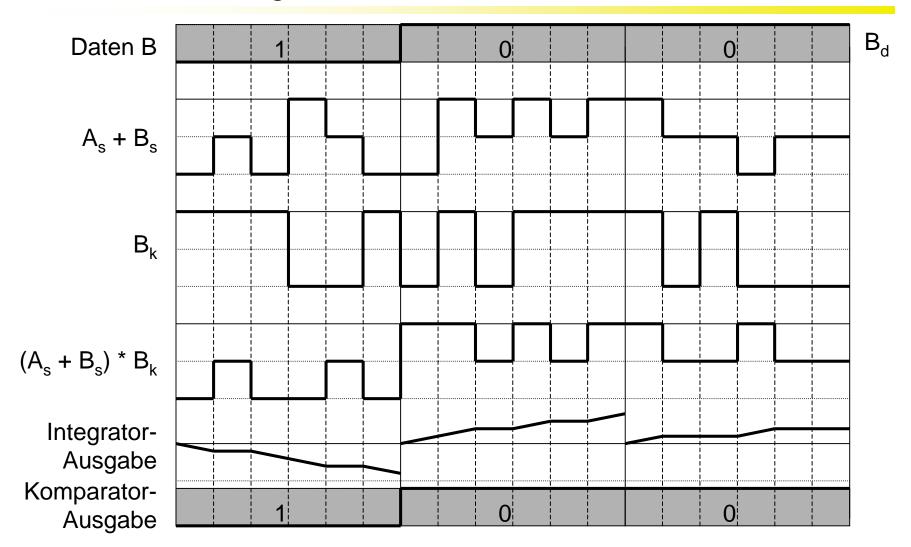
CDMA - auf Signalebene I



In der Praxis werden längere Schlüssel eingesetzt, um einen möglichst großen Abstand im Coderaum zu erzielen.


IS-95:

- Codelänge 2⁴² –1 bits
- Chipping Rate 1'228'800 chip/s
- Code wiederholt sich alle 41.425 Tage


CDMA - auf Signalebene II

CDMA - auf Signalebene III

CDMA - auf Signalebene IV

CDMA - auf Signalebene V

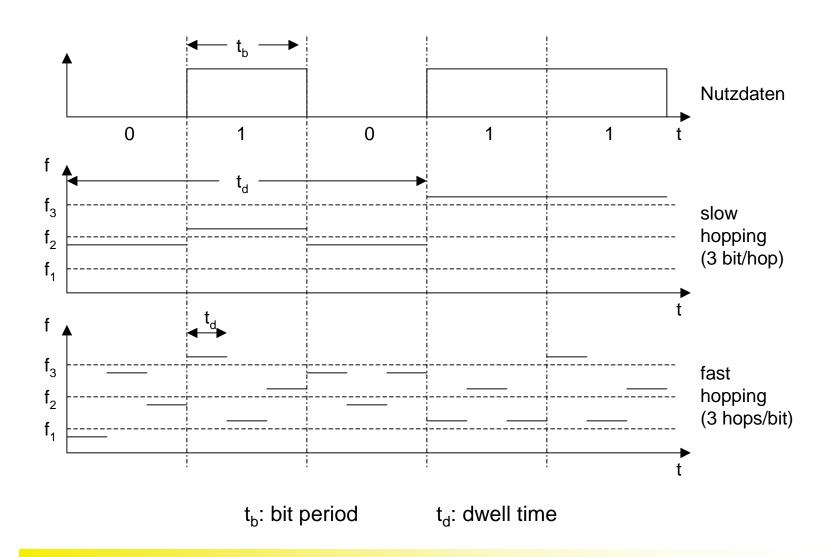
FHSS (Frequency Hopping Spread Spectrum) I

Diskrete Wechsel der Trägerfrequenz

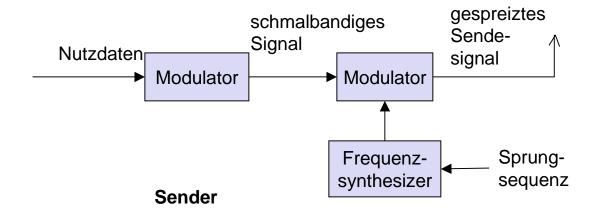
 Sequenz der Frequenzwechsel wird durch Pseudozufallszahlen bestimmt

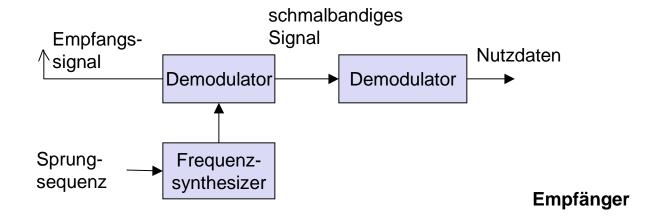
Zwei Versionen

- schneller Wechsel (fast hopping)
 mehrere Frequenzen pro Nutzdatenbit
- langsamer Wechsel (slow hopping) mehrere Nutzdatenbits pro Frequenz


Vorteile

- frequenzselektives Fading und Interferenz auf kurze Perioden begrenzt
- einfache Implementierung


Nachteile


- □ nicht so robust wie DSSS
- □ einfacher abzuhören

FHSS (Frequency Hopping Spread Spectrum) II

FHSS (Frequency Hopping Spread Spectrum) III

Vergleich SDMA/TDMA/FDMA/CDMA

Verfahren	SDMA	FDMA	TDMA	CDMA
Idee	Einteilung des Raums in Zellen/Sektoren	Einteilung des Frequenzbereichs in disjunkte Bänder	Aufteilen der Sendezeiten in disjunkte Schlitze, anforderungs- gesteuert oder fest	Bandspreizen durch individuelle Codes
Teilnehmer	nur ein Teilnehmer kann in einem Sektor ununter- brochen aktiv sein	jeder Teilnehmer hat sein Frequenzband, ununterbrochen	Teilnehmer sind nacheinander für kurze Zeit aktiv	alle Teilnehmer können gleichzeitig am gleichen Ort ununterbrochen aktiv sein
Signal- trennung	Zellenstruktur, Richtantennen	im Frequenz- bereich durch Filter	im Zeitbereich durch Synchronisation	Code plus spezielle Empfänger
Vorteile	sehr einfach hinsichtlich Planung, Technik, Kapazitätserhöhung	einfach, etabliert, robust, planbar	etabliert, voll digital, vielfältig einsetzbar	flexibel, benöigt weniger Frequenzplanung, weicher handover
Nachteile	unflexibel, da meist baulich festgelegt	geringe Flexibilität, Frequenzen Mangelware	Schutzzeiten wegen Mehrweg- ausbreitung nötig, Synchronisation	komplexe Empfänger, benötigt exakte Steuerung der Sendeleistung
Bemerkung	nur in Kombination mit TDMA, FDMA oder CDMA sinnvoll	heute kombiniert mit TDMA in z.B. GSM	Standard in Fest- netzen, im Mo- bilen oft kombi- niert mit FDMA	einige Probleme in der Realität, geringere Erwartungen