
Prof. Friedemann Mattern, Leyna Sadamori
Distributed Systems HS 2017

Assignment 2
Start: October 13, 2017
End: October 24, 2017

Objectives

In this assignment you will learn how to develop distributed Web applications using the two different
paradigms you have seen in the lecture: REST and WS-*. You will make use of these paradigms when
implementing a mobile phone application that gathers data from services provided by wireless sensor
nodes (SunSPOTs1) over the Web. The SunSPOTs expose their services (e.g., temperature sensor, am-
bient light sensor, etc.) through two different interfaces: REST-based and WS*-based (see Figure 1).

• Representational State Transfer (REST) is a style of software architecture for implementing
Resource-Oriented Architectures (ROAs). HTTP (1.1)2, the application protocol of the Web, rep-
resents an implementation of the REST principles. Distributed RESTful applications can be devel-
oped using the HTTP protocol as a universal interface for interacting with resources on the Web.
Such applications make use of HTTP verbs (GET, POST, PUT, DELETE, etc.) and mechanisms
(e.g., URIs and header options). Furthermore, REST defines how to serve different formats (e.g.,
HTML, JSON, or XML) for a given resource depending on the clients needs (“content negotia-
tion”).

• WS-* services, sometimes called “Big Web services,” describe a set of XML-based standards
(e.g., WSDL, SOAP, and UDDI) that can be used to implement Service-Oriented Architectures
(SOAs). Rather than using HTTP as an application protocol, WS-* services use it as a transport
protocol and define a number of additional layers to encapsulate distributed services.

This assignment comes with predefined interfaces for the tasks 1 and 2. Besides this assignment
sheet, you will find valuable hints on the implementation with the Javadoc comments given in the
provided code.

With this assignment you can gain 10 points out of the total 45.

Task Points
1 2
2 2
3 4
4 2

Total 10

1http://sunspotworld.com/
2http://http://tools.ietf.org/html/rfc2616

1

http://sunspotworld.com/
http://http://tools.ietf.org/html/rfc2616


Prof. Friedemann Mattern, Leyna Sadamori
Distributed Systems HS 2017

Mobile	
  Phone	
  

2.	
  SOAP	
  Request	
  	
  

	
  
Basesta7on2:	
  
WS-­‐*	
  APP	
  
Server	
  

	
  

Spot4	
  Spot3	
  

WS-­‐*	
  Spots	
  

1.	
  HTTP	
  Request	
  

	
  
Basesta7on1:	
  
Web	
  Server	
  

	
  

Spot2	
  Spot1	
  

RESTful	
  Spots	
  

VSLAB	
  
Server	
  

WS	
  HTTP	
  

Figure 1: System setup: Sensor nodes can be accessed either directly with HTTP (REST interface) or
with SOAP messages.

1 Experimenting with RESTful Web Services (2 Points)

The SunSPOTs Spot1 and Spot2 deliver the sensor values through a RESTful interface. Open your
browser and navigate to http://vslab.inf.ethz.ch:8081/sunspots/. From there you
can explore the HTML representation of the RESTful SunSPOTs. Browse and experiment with the
SunSPOTs Spot1 and Spot2 and look at the sensor values they offer through this Web interface (e.g.,
temperature, light, and acceleration). You could also use the Spots’ actuators to switch on or off their
LEDs and choose colors. Your task is to write an Android application that requests the temperature
measurement from Spot1 and displays the value on the screen.

Activity

Create a new Android project and set the application name to Webservices.

a) Place a label on top that displays your group leader’s nethz account name.

b) Your main activity should provide three buttons for the user (one for each task). Each button
should start a new activity.

c) Create a new activity for the REST client and link it to main activity. This activity has to imple-
ment the interface ch.ethz.inf.vs.a2.sensor.SensorListener so that the activity
can be informed upon reception of the temperature value.

Raw HTTP Request

RESTful Web services can be invoked using the HTTP protocol. In this assignment, we start by making
a “raw” HTTP request.

a) Create a class HttpRawRequestImpl that implements the interface
ch.ethz.inf.vs.a2.http.HttpRawRequest. It should generate a raw HTTP
GET request to obtain the temperature information of Spot1.
Hints:

2

http://vslab.inf.ethz.ch:8081/sunspots/


Prof. Friedemann Mattern, Leyna Sadamori
Distributed Systems HS 2017

• For the HTTP protocol have a look at http://www.elektronik-kompendium.de/
sites/net/0902231.htm, search for other how-tos, or look directly into the standard
RFC 7230 (http://tools.ietf.org/html/rfc7230).

• Take care to correctly implement the HTTP protocol: HTTP headers are required to have
a carriage return and newline at the end of each line. println(...), however, uses the
line.separator property, which is just a newline for Android.

• For this task 3 header fields are required: Host, Accept and Connection.

• Use the provided unit tests to check your implementation.

b) Write a class RawHttpSensor that extends the abstract class
ch.ethz.inf.vs.a2.sensor.AbstractSensor and implement the
executeRequest() method.
Hints:

• Use your request from a) and send it over a TCP connection.

• Use the Socket class in the java.net package. To send and receive data use the
getInputStream() and getOutputStream() methods of the Socket class and
read and write to the corresponding InputStream and OutputStream.

• Remember to flush when using PrintWriter.

c) Implement also the parseResponse() method to parse the HTTP response that you will re-
ceive and return the temperature value.

d) Create a new RawHttpSensor object, register your activity as a listener and invoke a request to
retrieve a new temperature value. Display the retrieved temperature value.

HttpURLConnection

Now we use the HttpURLConnection class for sending the HTTP request and receiving the HTTP
response.

a) Write a class TextSensor that extends the abstract class
ch.ethz.inf.vs.a2.sensor.AbstractSensor and implement all missing meth-
ods. In the request set the Accept header to text/plain.
Hints:

• You can create a request by invoking openConnection() on a java.net.URL object.

• You can set header fields with setRequestProperty(header, value) on the
HttpURLConnection object.

b) Create a new TextSensor object and apply the same steps to retrieve a temperature value.

JSON Representation

So far, we only got HTML responses back from the SunSPOTs. As mentioned before, a RESTful service
can offer several representations of the same resource. To get a different representation that is more
appropriate for machine-to-machine communication than HTML, we use the HTTP content negotiation
mechanism: Set the Accept header of your HTTP request to application/json. Instead of an
HTML page, the Web server will now return a JSON object containing the temperature information.
JSON is a lightweight version of XML, which is often used in Web mashups and RESTful interfaces
because it can directly be evaluated as JavaScript.

3

http://www.elektronik-kompendium.de/sites/net/0902231.htm
http://www.elektronik-kompendium.de/sites/net/0902231.htm
http://tools.ietf.org/html/rfc7230


Prof. Friedemann Mattern, Leyna Sadamori
Distributed Systems HS 2017

a) Write a class JsonSensor that extends ch.ethz.inf.vs.a2.sensor.AbstractSensor.
You can parse the response using the JSON library that Android already provides (org.json.*).

b) Create a new JsonSensor object and apply the same steps to retrieve a temperature value.

2 Experimenting with WS-* Web Services (2 Points)

While Spot1 and Spot2 offer a RESTful interface, Spot3 and Spot4 can be accessed using their WS-* Web
Service interface. Open your browser and navigating to: http://vslab.inf.ethz.ch:8080/
SunSPOTWebServices/SunSPOTWebservice. From there you can access the WSDL (Web Ser-
vices Description Language) description of the offered functionality. Have a closer look at the WSDL in-
terface and try to understand its content and what it provides as you did for the RESTful version. Finally,
use the HTML interface at http://vslab.inf.ethz.ch:8080/SunSPOTWebServices/
SunSPOTWebservice?Tester to test the Web Service in your browser.
Hint: To fully understand the WSDL description, also look at the schema specified in the WSDL file.

Activity

Create a new activity for the SOAP client and link it to main activity. This activity has to implement the
interface ch.ethz.inf.vs.a2.sensor.SensorListener so that the activity can be informed
upon reception of the temperature value. Remember to adjust your main activity so that you can access
this new activity.

Manual SOAP Invocation

a) Write a class XmlSensor that extends ch.ethz.inf.vs.a2.sensor.AbstractSensor.
Use the setDoOutput(true) method to create a POST request. You can use the XML tem-
plates provided by the Tester to create your requests.
Hint: You can use Netbeans and Wireshark to inspect an exemplary SOAP request.

b) For the implementation of the parseResponse(String response) method use the
XmlPullParser, which is also delivered by Android.

c) Create a new XmlSensor object, register your activity as a listener and invoke a request to retrieve
a new temperature value. Display the retrieved temperature value.

SOAP Library

a) Write a class SoapSensor that extends ch.ethz.inf.vs.a2.sensor.AbstractSensor.
Use the provided ksoap-2 library and use the XML template provided by the Tester, to figure out
which parameters to set in the SOAPObject.

b) Create a new SoapSensor object, register your activity as a listener and invoke a request to retrieve
a new temperature value. Display the retrieved temperature value.

4

 http://vslab.inf.ethz.ch:8080/SunSPOTWebServices/SunSPOTWebservice
 http://vslab.inf.ethz.ch:8080/SunSPOTWebServices/SunSPOTWebservice
http://vslab.inf.ethz.ch:8080/SunSPOTWebServices/SunSPOTWebservice?Tester
http://vslab.inf.ethz.ch:8080/SunSPOTWebServices/SunSPOTWebservice?Tester


Prof. Friedemann Mattern, Leyna Sadamori
Distributed Systems HS 2017

3 Your Phone as a Server (4 Points)

Similar to the SunSPOT sensor node, your phone can also provide RESTful Web Services for its sensing
and actuation functionality. Your task is to make two sensors and two actuators available through a
REST server running on your mobile phone.

Activity

Create a new activity for the REST server and link it to main activity. Provide UI elements to inform the
user about the IP address and port, at which your server will be available.
Hints:

• Use the java.net.NetworkInterface.getNetworkInterfaces() method to get all
network interfaces.

• Iterate through the interfaces and check their names. Usually the WiFi interface is called wlan0.

Server

a) Write a class that extends a Service such that your server can run in the background. The user
should have the possibility to start and stop the server.

b) Use the ServerSocket to listen on a specified port, e.g, 8088 (you will have to pick a port
greater than 1024). Wait for and accept incoming connections and then handle the requests,
which works similar to your Socket client in Task 1.
Hint: Parse the incoming request in order to extract the HTTP Method, resource URI, headers,
etc.

c) Formulate an HTTP response (take also care of handling errors such as unsupported requests,
wrong formats, etc.). Your server does not have to be RFC-compliant, you can ignore all header
fields and response types that you do not use.

d) Run the Android Wi-Fi Hotspot app and connect your laptop to the phone. Use your browser on
the laptop to test the functionality of your Web server.

e) So far, only one request can be handled at the time. Add multi-threading to your Web server, so
that requests from several clients can be accepted and answered simultaneously.

Resources

Your REST server should provide access to some resources.

a) Reuse your implementation to access sensors and actuators from Assignment 1, Task 1.

b) For each resource, write a small HTML document that displays the resource state, and links to
return to the root resource. For actuators, provide information about the content to be sent with
the request (e.g. vibration pattern). Hint: You can also provide HTML forms to interact with
actuators (additionally to the text description).

c) The root resource should list all available resources as links pointing to the correct resource URI.

d) Link your server implementation from above to the correct resources according to the requested
resource. Make sure to pass the request to the resource, since it may be necessary to further
process it.

5



Prof. Friedemann Mattern, Leyna Sadamori
Distributed Systems HS 2017

4 Mini-Test (2 Points)

1. HTTP Protocol Version 1.1

a) How is a Request-Line defined according to RFC 2616?

b) How does a (minimal) request look like if you want to get the root document from the host
192.168.1.1 at port 8080? Spell out carriage return (CR) and line feed (LF).

c) Name two REST principles that can be implemented using the HTTP header fields.

2. Network I/O

(a) The Java core library provides two classes to implement a client and a server that commu-
nicate via TCP. Name them and describe how these classes are used in the client and in the
server implementation.

(b) Java’s library java.io provides classes and interfaces for stream-oriented I/O. In order to
work with TCP connections, the class Socket provides methods to get an InputStream
or an OutputStream. Use InputStream and OutputStream to explain blocking be-
havior. State, which of the methods from InputStream and OutputStream are show-
ing blocking behavior.

3. Representational State Transfer
Right or wrong? State for the following statements, whether they are correct or incorrect.

a) REST is a protocol and can be used as an alternative to SOAP.

b) Stateless means, the server stores client-context so the client does not have to send context
information in each request.

c) The HTTP methods POST, GET, PUT, DELETE correspond to the operations CREATE,
READ, UPDATE, DELETE, to manipulate resources.

d) REST defines JSON as data representation.

4. WS-* services

a) Which document holds information about the definition of the SunSPOTWebservice? How
can this document be retrieved?

b) Where can the type definition of the elements getSpot and getSpotResponse be
found? Give the element definitions for both getSpot and getSpotResponse.

c) Imagine, the SunSPOTWebService would be implemented using SMTP as transport proto-
col. Where in the WSDL file would you declare the transport protocol? How does this affect
the soap:address in the service definition?

5. Android Emulator Networking

a) What IP address is assigned to an emulated device? Why is it the same address even if
multiple emulated instances run on the same development machine?

b) To whom does a call on an emulated instance to 127.0.0.1 refer?

c) By which IP address can the development machine be reached from an emulated device?

d) How can the development machine connect to a port on the emulated device?

6



Prof. Friedemann Mattern, Leyna Sadamori
Distributed Systems HS 2017

Deliverables

The following deliverables have to be submitted by 11:59 p.m., 24 October 2017:

1. code.zip You should create a zip file containing the Android Studio projects created in this as-
signment. The projects should have been tested both on the mobile phone and on the emulator.
The code must compile on our machines as well, so always use relative paths if you add external
libraries to your project. Do not forget to include those libraries in the zip file. Please use UTF-8
encoding for your documents and avoid special characters like umlauts.

2. answers.pdf Your answers to the mini-test in PDF format.

Submission

The deliverables must be uploaded through:
https://www.vs.inf.ethz.ch/edu/vs/submissions/
The group leader can upload the files, the other group members have to sign them in the online system
to express their consent with the submission. Use your nethz accounts to log in. The submission script
will not allow you to submit any part of this exercise after the deadline. However, you can re-submit as
many times as you like until the deadline.

7

https://www.vs.inf.ethz.ch/edu/vs/submissions/

	Experimenting with RESTful Web Services (2 Points)
	Experimenting with WS-* Web Services (2 Points)
	Your Phone as a Server (4 Points)
	Mini-Test (2 Points)

