Seeing is Believing: Proximity-based Authentication

Peter Pilgerstorfer
Motivation

- Pairing without user interaction
- Traditional authentication
 - E.g. enter/confirm shared PIN
 - Not possible for certain IoT devices
 - Not scalable
- Use cases
 - NFC payments
 - Keyless entry and start systems
 - Secure pairing for implants
 - ...

Pairing accessory

Make sure that this PIN 141959 matches the PIN that Lumia displays.

ok cancel
Goal

- A secure and authentic connection between two devices
 - Shared secret
 - Verify authenticity
- Assumption:
 Authentic if the devices are within proximity to each other

- Why does proximity lead to trust?
- How to determine proximity?
Why does proximity lead to trust?

Image sources: [9-11]
How to determine proximity?

- Time of Flight
- Radio signal
- RSSI (Received Signal Strength Indicator)
- Accelerometer
- Illumination
- Audio signals
- …
Overview

- Wi-Fi Time of Flight, CoNext 2014
- Amigo, UbiComp 2007
- ProxiMate, MobiSys 2011

Image sources: [6-8]
Wi-Fi Time of Flight

- Measure response time
 \[t_f = \frac{1}{2} (t_m - t_{ACK} - \delta) \]
- Calculate the distance
 \[d = c \cdot t_f \]
Wi-Fi Time of Flight - Challenges

- Noisy measurements
 - Multiple paths
 - Imprecise hardware
- Consequences
 - Measure multiple times
 - Effective median error: 1.7 – 2.4m

Image taken from Marcaletti et al [1]

LOS: line-of-sight
NLOS: non-line-of-sight
Wi-Fi Time of Flight - Challenges

- **Processing time**
 - Keep δ as low as possible
 - What if attacker is faster?

 with $\delta = 10.2 \, \mu s$, up to $\sim 1500 \, m$ “closer”
Wi-Fi Time of Flight - Conclusion

+ Works with standard Wi-Fi hardware
 - Assumes that attacker doesn’t have access to faster hardware
 - Not suitable for close distance pairing
 - Many packets have to be sent
Use special hardware to reduce processing time
- With $\delta_T < 1\, ns$ an attacker can appear at most $\sim 15\, cm$ closer
- Reflect “instantly”
- Avoid demodulating signal

Suitable for IoT devices
Amigo

- Radio environment is similar for devices in proximity
- Strategy: Passively observe received signal strength indicator (RSSI) for Wi-Fi packets

Images taken from Varshavsky et al [3]
Amigo – Observation

- Wi-Fi cards are set to promiscuous mode
 - Receive all packets
- Signature of the radio environment
 - Hash of every observed packet
 - RSSI of every observed packet
- RSSI
 - Defined in IEEE 802.11
 - Received power level
Amigo – Authentication

- Establish shared secret
- Observe packets transmitted via Wi-Fi
- Send signature to each other (hash and RSSI)
- Check if the other device made similar observations
Amigo – Results

- Attackers >=3m away can be detected within 5s
- Improve security by hand waving
 - Detect attackers within 1m
Amigo – Conclusion

+ Works with standard Wi-Fi hardware
+ Works reasonably well in close distances

- Paring time depends on Wi-Fi activity
- Diffie-Hellman key exchange is computationally intensive
ProxiMate

- Radio environment is similar for devices in proximity
- Strategy: Observe FM or TV radio signals directly instead of the received signal strength indicator

Images taken from Mathur et al [4]
ProxiMate – Wireless Channel

- Wireless channel
 - State described by complex number
 - Amplitude given by absolute value
 - Phase given by angle

- Features observed by ProxiMate:
 - Amplitude
 - Change of phase

- Use software-defined radio for measurements

Image source: [13]
ProxiMate – FM/TV signal

- Frequency modulated
 - Amplitude constant
 - Amplitude variation not signal dependent
- TV: ~600 MHz
- FM: ~100 MHz

Image source: [12]
ProxiMate – Authentication

- Basic idea: generate a key out of the observed radio environment
 - Alice and Bob observe the environment
 - Alice collects timestamps of observed extrema (L)
 - Alice sends timestamps to Bob
 - Bob collects observed extrema at timestamps L
 - Extremas encode the key:
 - Maximum … 1
 - Minimum … 0
ProxiMate – Bit-rate

- Bit-rate limited
 - Wait long enough between two bits such that they are not correlated
- Bit errors occur and have to be corrected
 - Reduced effective bit-rate
- Improve Bit-rate
 - Use multiple radio stations simultaneously

![Bar chart showing bit-rate comparison between TV (584.31 MHz) and FM (88.7 MHz) in stationary, moving slowly, and moving fast conditions.](chart.png)
ProxiMate – Results

- Pairing using 10 TV sources:
 - 3.3s at 2.4 cm distance
- Pairing using 10 FM sources:
 - 15s at 16.5 cm distance

- TV: ~600 MHz, ~50 cm wavelength
- FM: ~100 MHz, ~3 m wavelength
ProxiMate – Conclusion

+ Works reasonably fast in close distances
+ Pairing distance can be varied (using different radio channels)
+ Computationally lightweight

- Not yet applicable to today's devices
Conclusion

- **Wi-Fi Time of Flight (by Capkun et al.)**
 - Potentially fastest
 - Requires special-purpose hardware

- **Amigo**
 - Can be implemented with standard Wi-Fi hardware
 - Requires Wi-Fi communication

- **ProxiMate**
 - Computationally cheap
 - Requires more advanced radio interface
References

Thank You
References

[9] https://ibtx.wordpress.com/2015/01/06/wearables-time/