Gesture Recognition: Hand Pose Estimation

Adrian Spurr
Ubiquitous Computing Seminar FS2014
27.05.2014
What is hand pose estimation?

Input

Computer usable form
Augmented Reality

Robot Control

Gaming

PC Control
Data glove

- Utilizes optical flex sensors to measure finger bending.
- Advantage: High accuracy, can provide haptic feedback.
- Disadvantages: invasive, long calibration time, unnatural feeling, heavily instrumented.
Thanks to cheap depth cameras...
...and increase in GPU Power
Problems occurring

- Noisy data
- Segmentation
Problems occurring

- Self-occlusion and viewpoint change:
Problems occurring

- 27 Degrees of freedom per hand -> 280 trillion hand poses:
Problems occurring

• Performance: For practical use, must be real time.
Principle of operation
Existing schools of thought

• Model-based:
 – Keeps internally track of current pose.
 – Updates pose according to current pose and observation.

• Discriminative:
 – Maps directly from observation to pose.
 – “Learn” from training data and apply knowledge to unseen data.
Short intro to Random Forests

- Ensemble learning
- Classification and Regression
- Consists of decision trees

A decision tree:
Short intro to Random Forests

Classification tree training

Features = «Properties» of data

Data in feature space
Short intro to Random Forests

Features = «Properties» of data
Short intro to Random Forests

Features = «Properties» of data
Short intro to Random Forests

Features = «Properties» of data
Short intro to Random Forests

Features = «Properties» of data
Building a classification tree
Building a classification tree
Building a classification tree
Random feature sampling

\[T \] The full set of all possible node test parameters

\[T_j \subset T \] For each node the set of randomly sampled features

\[\rho = |T_j| \] Randomness control parameter.

- For \(\rho = |\tau| \) no randomness and maximum tree correlation
- For \(\rho = 1 \) max randomness and minimum tree correlation

Choose \(T_j \) which splits the data with maximum information gain.
Bagging

S_0 Full training set

$S^t_0 \subset S_0$ Randomly sampled subset
Prediction

Forest output probability

\[p(c|v) = \frac{1}{T} \sum_{t} p_t(c|v) \]
RF for pose estimation

Why Random Forests?
• Robust
• Fast
• Thorougly studied

How should we use them?
• Must choose what to split on.
• What should the labels be?
Advanced body pose recognition

[Shotton2011]
Advanced body pose recognition

- Discriminative approach.
- Used in the Kinect.
- First paper to use synthetic training data.
- Basis for many future papers.
Creating synthetic data

[Shotton2011]
Split function

\[f_\theta(I, x) = d_I \left(x + \frac{u}{d_I(x)} \right) - d_I \left(x + \frac{v}{d_I(x)} \right) \]

\[d_I(x) : \text{Depth at position } x \]

\[\theta = (u, v) \]
Joint prediction

$$(l, x)$$

tree 1

$$(l, x)$$

tree T

$P_1(c)$

$P_T(c)$

[Shotton2011]
Per-class accuracy vs. tree depth

- Accuracy increases as depth of tree increases.
- Overfitting occurs for 15k training images.
- More training images leads to higher accuracy and less overfitting.

[Shotton2011]
Negative Results

- Failure due to self-occlusion:

- Failure due to unseen pose:
Unresolved issues

• To capture all possible poses, need to generate huge amount of training data.

• Training RF on big training set means more trees and deeper trees.

• Big amount of memory needed.
Unresolved issues

• To capture all possible poses, need to generate huge amount of training data.
• Training RF on big training set means more trees and deeper trees.
• Big amount of memory needed.
• Solution: Divide training data into sub-sets and solve classification for each set separately.
Multi-layered Random Forest

- Cluster training data based on similarity.
- Train RF on and for each cluster.
- First layer assigns input to proper cluster.
- Second layer gives the final hand part label distribution.

[Keskin2012]
Clustering training data

- Cluster based on weighted differences.
- Penalize differences of viewpoint, finger positions.
- Label each cluster, labels refer to hand shape.
- Train Random Forest on clusters.
Experts

- Use hand part labels.
- Train for each cluster a separate Random Forest.
- Each forest is called Expert.
Two prediction methods

- Global Expert Network:
 - Feed input to first layer of Random Forest, average input, get hand shape label.
 - Feed input to corresponding expert, get hand part distribution.
Two prediction methods

- Local Expert Network
 - Feed input to first layer of Random Forest, get hand shape label for each pixel.
 - Feed each pixel to its corresponding expert, get hand part distribution.
Parts distribution to pose

- RDF returns the hand part distribution.
- Get centre of each distribution by utilizing mean shift.
American Sign Language
First layer accuracy on ASL

- 2-fold cross-validation: 97.8%

- Confusion occurs for (m,n), (m,t) and (n,t)
Confusions

- Confusion occurs for \((m,n), (m,t)\) and \((n,t)\)
Second layer accuracy

Q = Number of clusters
Problems

- Not feasible to capture all possible variations of hand with synthetic data.
- Methods using only synthetic data suffer from synthetic-realistic discrepancies.
- But: Using realistic training data expensive, due to manually labelling them.
Problems

- Not feasible to capture all possible variations of hand with synthetic data.
- Methods using only synthetic data suffer from synthetic-realistic discrepancies.
- But: Using realistic training data expensive, due to manually labelling them.
- Solution: Transductive Learning.
Transductive Random Forest

- Transductive learning: learn from labelled data, apply knowledge transform to related unlabelled data.
- Estimate pose based on knowledge gained from both labelled and unlabelled data.

Transductive Learning: The realistic-synthetic fusion are learned by the transductive term Q_i throughout the whole forest.

Labelled and unlabelled data are clustered via Q_y, by comparing appearances of patches.
Overview

Viewpoint Classification: Viewpoint classification is first performed at the top levels, controlled by the viewpoint term Q_a.

Joint Classification: At mid levels, Q_p determines classification of joints, when most viewpoints are classified.

Regression: To describe the distribution of realistic data, nodes are optimised for data compactness via Q_v and Q_u towards the bottom levels.
Training data

- Training data consists of labelled real data and synthetic data, and unlabelled real data.
- Labelled elements are image patches, not pixels.
- Label consists of tuple \((a, p, v)\):
 - \(a\) = Viewpoint
 - \(p\) = Label of the closest joint
 - \(v\) = Vector containing all positions of joint.

\[a = \text{"Front"}, \quad p = \text{"Thumb"}, \quad v = (3x16)\text{ coordinates}\]
Quality Function

- Randomly choose between the two:

\[
\begin{align*}
Q_{apv} &= \alpha Q_a + (1 - \alpha) \beta Q_p + (1 - \alpha)(1 - \beta) Q_v \\
Q_{tss} &= Q_t \omega Q_u
\end{align*}
\]

Transductive Term

Classification-Regression Term
Quality Function

\[Q_{apv} = \alpha Q_a + (1 - \alpha) \beta Q_p + (1 - \alpha)(1 - \beta) Q_v \]

- \(Q_a \) : Measures quality of split with respect to viewpoint \(a \)
- \(Q_p \) : Measures quality of split with respect to joint label \(p \)
- \(Q_v \) : Measures compactness of vote vector \(v \)
Quality Function Parameter

Measures the “purity” of the node with respect to either the viewpoint a, or the joint label p

\[
\alpha = \begin{cases}
1 & \text{if } \Delta_a(\mathcal{L}) < t_\alpha \\
0 & \text{otherwise}
\end{cases} \\
\beta = \begin{cases}
1 & \text{if } \Delta_p(\mathcal{L}) < t_\beta \\
0 & \text{otherwise}
\end{cases}
\]
Quality Function

\[Q_{tss} = Q_t^\omega Q_u \]

- \(Q_t \) : Measures image similarity between real data patches
- \(Q_u \) : Measures purity based on the association between the labelled and unlabelled data
Kinematic Refinement

• Hands are biomechanically constrained on the poses it can do.
• Use this for our advantage.
• Utilize kinematic refinement to enforce these constraints.
Some results

RGB

Depth

FORTH

Classification (Ours)

Regression
Joint prediction accuracy

Quantitative results of the multi-view experiment

Test sequence B (Average error)

Test sequence C (Average error)
Estimating pose of two hands?

- Just apply single hand pose estimator twice?
- What if both hands are strongly interacting?
- Additional occlusion must be accounted for.
Dual hand pose estimation

- Model-based approach.
- Set up parameter space representing all degrees of freedom for both hands.
- Employ PSO to find best parameters suiting observation and current configuration with respect to a cost function.
Sample parameter space

\[x - \text{Roll} \]

\[y - \text{Pitch} \]

\[z - \text{Yaw} \]
Cost function over param. space
Initialization

Random sample of n particles with random velocities.
Iterating over parameter space

Update particle position according to velocity

Update particle velocities with regards to:
- Current velocity
- Local best position
- Global best position
Tracking

- Use RGB image to create skin map.
- Segment depth image according to skin map.
Tracking

- Cost function to optimize:

\[E(O, h, C) = P(h) + \lambda_k \cdot D(O, h, C) \]

\(P(h) \): Penalizes invalid finger positions.
\(D(O, h, C) \): Penalizes discrepancies between hypothesis \(h \) and observation \(O \).
Applying PSO

- Change particle velocity according to:

\[v_{k+1,i} = w(v_k,i + c_1 r_1 (P_{k,i} - x_{k,i}) + c_2 r_2 (G_k - x_{k,i})) \]

\[P_{k,i} = \text{Best known position of particle } i \text{ in generation } k. \]

\[G_k = \text{Best known position of all particles in generation } k. \]

- Apply PSO for each observation \(O \). Exploit temporal information by sampling particles around previous hypothesis.
Some results
Accuracy

The graph shows the accuracy (M_d) in millimeters as a function of the number of generations. The lines represent different sample sizes: 32, 64, 128, and 256. As the number of generations increases, the accuracy decreases.
Future of Hand Pose estimation

• Academically solved
• Further research in areas of recovering more than pose, such as hand model or 3D skin models.
• Including RGB image for prediction increases accuracy.
• Use of real data reduces synthetic-realistic discrepancies.
Thank you for your attention!