TagSense

A Smartphone-based Approach to Automatic Image Tagging

Chuan Qin, Xuan Bao, Romit Roy Choudhury, Srihari Nelakuditi
University of South Carolina and Duke University

Presentation by Philippe von Bergen
Overview

• Tagsense
 – Introduction, Problem Space, System
 – Who, What, Where, When
 – Evaluation
 – Limitations, Conclusion, Contributions

• Reviews

• MyState & What did you do today?

• Summary & Discussion
Overview

• Tagsense
 – Introduction, Problem Space, System
 – Who, What, Where, When
 – Evaluation
 – Limitations, Conclusion, Contributions
• Reviews
• MyState & What did you do today?
• Summary & Discussion
Introduction

- Automatic image tagging system
- Distributed
- Collaborative
- Multi-dimensional
Problem Space (1/3)

- Date, time
- Location
- People present
- Action
- Ambience
- Tags:

 November 21st afternoon, Nasher Museum, indoor, Romit, Sushma, Naveen, Souvik, Justin, Vijay, Xuan, standing, talking
Problem Space (2/3)

- Location: Location services, reverse look up
- Indoor/Outdoor: Light sensor
- Names: Present phones
- Action: Accelerometer
- Ambience: Microphone
- Date, time: Internal clock
Problem Space (3/3)

- Humanly assigned tags complementary
- Complementary to existing solutions (Picasa, iPhoto, Google Goggles)
- TagSense needs electronic foot print → Not applicable to objects and subjects without devices
System (1/2) – Overview
System (2/2) – Cloud, Privacy

- Local recognition of tags, if possible
- Cloud service
 - CPU-intensive calculations
 (Laughter recognition)
 - External databases
 (Reverse GPS)
- Password and encryption to ensure privacy
Overview

• Tagsense
 – Introduction, Problem Space, System
 – Who, What, Where, When
 – Evaluation
 – Limitations, Conclusion, Contributions

• Reviews

• MyState & What did you do today?

• Summary & Discussion
Who (1/6) – Overview

- Several systems
 - Accelerometer → Posing signature
 - Compass heading → Personal compass offset
 - Movement → Multiple snapshots and heuristics
- Serial application of all three techniques
Who (2/6) - Posing signatures

- Detection via accelerometer
- Several seconds of posing
- Used to detect people outside picture
Who (3/6) – Compass direction

• Posing signature sufficient, but not necessary
• Using compass direction to detect people "facing" the camera
• Personal compass offset compensating phone heading:

\[
\text{UserFacing} = (\text{CameraAngle} + 180) \mod 360
\]
\[
\text{PCO} = ((\text{UserFacing} + 360) - \text{CompassAngle}) \mod 360
\]
Who (4/6) – Compass direction

- Recalibrated using posing signature and anchor pictures
- Revisit pictures containing possible errors
- Partly offline
Who (5/6) – Moving subjects

- Multi-dimensional sensing heuristic
- Multiple snapshots to detect pixel movement
- Compared to accelerometer data
- Coarse bucket matching
Who (6/6) – Moving subjects

1. Optical Flow
2. Camera movement substracted
3. Movement coloring
4. Edge finding
5. Motion vector based on center pixels
6. Coarse bucketing
What

• Distinct physical activities
 – Accelerometer data
 – Location information

• Ambience classified using microphone
 – Talking
 – Music
 – Silence
Where / When

- Location based on reverse GPS look up
- Indoor/Outdoor recognition using ambient light sensor
- Objects near or in picture detected using location/orientation database
- Date and time enriched with weather conditions
Overview

• Tagsense
 – Introduction, Problem Space, System
 – Who, What, Where, When
 – Evaluation
 – Limitations, Conclusion, Contributions
• Reviews
• MyState & What did you do today?
• Summary & Discussion
Evaluation (1/6) – Detection

- Reasonably well performance on test set
- Precision needs to be increased
Evaluation (2/6) – Detection

- More false negatives based on one training face
- More training might improve results
Evaluation (3/6) – Overall

- Better recall
- Increased fall-out
- Reduced precision
Evaluation (4/6) – Name search

- More consistent
- Better recall
- Improvements possible
- Combination might further increase precision
Evaluation (5/6) – Tagging

- Limited to TagSense vocabulary
- Precision and recall high
- Improvement needed for vocabulary
Evaluation (6/6) – Tag search

- Volunteers search previously shown pictures
- Sufficient precision, depending on user and picture
- Average hit rate: 0.7

<table>
<thead>
<tr>
<th>Name</th>
<th>Avg. Relevant</th>
<th>Avg. Irrelevant</th>
<th>Hit rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>User 1</td>
<td>2.75</td>
<td>4.85</td>
<td>0.85</td>
</tr>
<tr>
<td>User 2</td>
<td>5.6</td>
<td>1.8</td>
<td>0.65</td>
</tr>
<tr>
<td>User 3</td>
<td>4.05</td>
<td>2</td>
<td>0.5</td>
</tr>
<tr>
<td>User 4</td>
<td>4.05</td>
<td>2.35</td>
<td>0.7</td>
</tr>
<tr>
<td>User 5</td>
<td>2.55</td>
<td>1.6</td>
<td>0.55</td>
</tr>
</tbody>
</table>
Overview

• Tagsense
 – Introduction, Problem Space, System
 – Who, What, Where, When
 – Evaluation
 – Limitations, Conclusion, Contributions

• Reviews

• MyState & What did you do today?

• Summary & Discussion
Limitations

● Limited vocabulary
● No captions can be generated
● Past pictures can not be tagged
● Cumbersome session management
● Complex system for people detection
Conclusion

- Leverages automatic tagging of picture
- Prototype implementation
- Evaluation shows lower precision, but higher recall and fall-out
- Complementary approach might produce best results
Contribution

- New, alternative, multi-dimensional approach to automatic image tagging
- TagSense architecture
- Evaluation of TagSense
Overview

- Tagsense
 - Introduction, Problem Space, System
 - Who, What, Where, When
 - Evaluation
 - Limitations, Conclusion, Contributions

- Reviews

- MyState & What did you do today?

- Summary & Discussion
Review (1/3) – Numbers

- Overall rating
 - Average: 1.9 (Accept)
 - Standard deviation: 0.7

- Confidence:
 - Average: 2.1 (Medium)
 - Standard deviation: 0.3

- Contribution:
 - Average: 3.9 (Strong)
 - Standard deviation: 0.54
Review (2/3) – Compliments

- PoC comparison to Picasa, iPhoto
- Invisible content captured
- Fair assumptions
- Off the shelf hardware used
- Privacy addressed and implemented
- Fallback methods for person recognition
- Aware of limitations
- Good presentation
Review (3/3) – Critiques

- Extended evaluation required
- Not applicable to old pictures
- Simplified assumptions
- All participants need the application
- Complicated session management
- CPU and power consumption not addressed
- Manual editing missing
- Redundancy
Overview

• Tagsense
 – Introduction, Problem Space, System
 – Who, What, Where, When
 – Evaluation
 – Limitations, Conclusion, Contributions

• Reviews

• MyState & What did you do today?

• Summary & Discussion
MyState
Hardy, Rukzio, Holleis, Wagner
Lancaster University, University of Duisburg-Essen, DOCOMO Euro-Labs

- Physical tags containing textual information
- Placed at arbitrary location
- Posting content to Facebook Application
MyState & TagSense

• Reading RFID-Tags to determine
 – Objects
 – Locations
 – Additional tagging information, context
 – People not having a phone

• Limited to short ranged
What did you do today?
Farrahi, Gatica-Perez
EPFL

- Routines and behavior detection
- Based on GSM information
- Latent Dirichlet Allocation and Author Topic model
Wdydt? & TagSense

• Increase presence detection precision using a local cell tower representation
 – Use smart phones to triangulate positions
• Improved approach for moving subjects identification and activities
Overview

• Tagsense
 – Introduction, Problem Space, System
 – Who, What, Where, When
 – Evaluation
 – Limitations, Conclusion, Contributions

• Reviews

• MyState & What did you do today?

• Summary & Discussion
Summary

• TagSense uses distributed systems approach
• Sensors enrichen picture with tags
• Problem driven idea
• Use of behavior inference for tags
• Results could be used to determine behavior
• Performance improvement by combination with face recognition
• Limitations to overcome
Discussion

• Did they took realistic assumptions?
• How to combine TagSense with face recognition?
 – Or increase precision otherwise?
• Is machine learning able to increase precision?
• How to integrate TagSense with social media?
• How to simplify session management / privacy?
• What additional information could be tagged?