Increasing Energy Awareness Through Web-enabled Power Outlets

M. Weiss¹ D. Guinard²

¹Institute for Pervasive Computing Bits to Energy Lab ETH Zurich

> ²MIT Auto-ID Labs SAP Research Zurich ETH Zurich

Cyber Physical System Seminar 2011 by Patrick Probst

1/15

The Problem

System Architecture

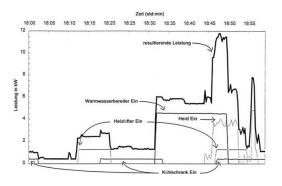
Deployment and System Evaluation O

Conclusions and Future Work

The Small Scale Problem

Problem

- how to proof my energy bill
- how to reduce my energy costs
- how to monitor single consumptions


•

- plug based monitoring
- no wiring complexity
- easy to handle and maintain
- •

Small Scale Solution

- most require a complex installation around
- not capable to motivate user for longer time periods
- measurement not in real time
- lack of possibility for aggregating the consumption of multiple sensors

3/15

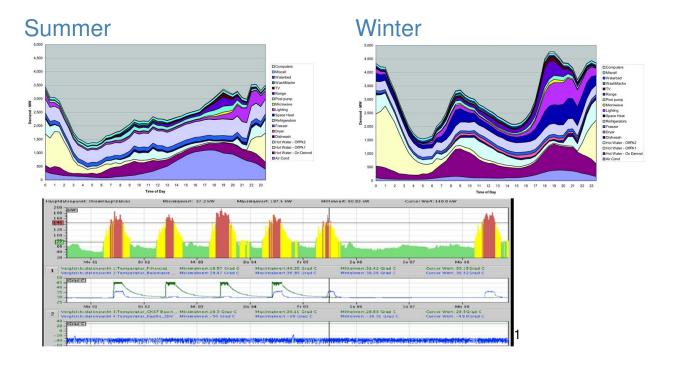
The Problem 00000

System Architecture

Deployment and System Evaluation

The Medium/Large Scale Problem (globally)

Problem


- interoperability
- reliability
- security

Dream

- Web-Service based architecture
 - ease of integration with existing services, visualization tools, etc.
 - accessible to a large pool of developers (i.e., Web developers)
 - distribution, universal accessibility (e.g., from mobile phones, etc.)
- off the shelf products

Why globally? Profile Aggregation

 $^{1\\} http://www.solarchoice.net.au/blog/how-do-i-use-electricity-throughout-the-day-the-load-curve.html?replytocom=6376$

5/15

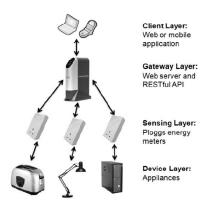
The Problem

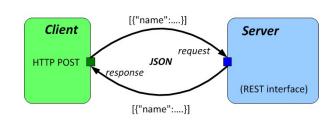
System Architecture

Deployment and System Evaluation

Conclusions and Future Work

Why globally? System Service


- Transmission System Operator (TSO): Continuous balance of production and consumption by system services.
- TSO buys system service.
 - Market for system service.
 - Auction of different products.
- system service is EXPENSIVE, because reproach of power station is necessary (high operation and opportunity costs).

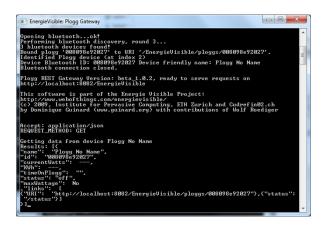


Example:

primary and secondary service: 10-40kCHF/MW

The Layer Architecture

7/15

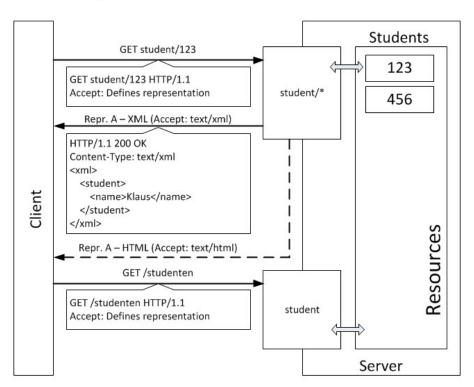

The Problem

System Architecture

Deployment and System Evaluation O

Conclusions and Future Work

Smart Gateway


- scans for available energy meters and makes them available as web resources
- makes the functionality available through simple URLs based on a small footprint webserver

Example:

- 1. http://[GatewayAddress]/energievisible/ploggs/roomLamp is bound to a method
- 2. method first initiates a Bluetooth connection through a low level call
- 3. connection to Plogg named "roomLamp"
- 4. polls the Plogg reading current load of energy measured

System Architecture

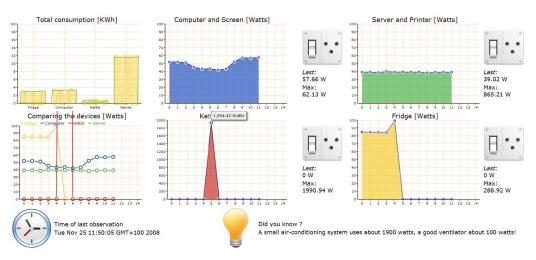
Representation State Transfer (REST)

9/15

The Problem

System Architecture

○○
○●


Deployment and System Evaluation

Conclusions and Future Work

RESTful Methods

URI	HTTP Method	Description
/energievisible	GET	Index page
/energievisible/ploggs	GET	Lists all the available Ploggs in range
/energievisible/ploggs	POST	Create new Plogg on discovery
/energyieisible/ploggs/all	GET	Show consumption of all Ploggs
/energievisible/ploggs/[NAME/ID]	GET	List the consumption of Plogg [NAME/ID]
/energievisible/ploggs/[NAME/ID]	PUT name	name Set the name of the Plogg
/energievisible/ploggs/[NAME/ID]/status	GET	Displays the current status of the Plogg
/energievisible/ploggs/[NAME/ID]/status	PUT on/off	on/off Switches Plogg on or off
/energievisible/ploggs/[NAME/ID]/[RESSOURCE]	GET	Measured value of RESSOURCE (e.g., power, cur-
		rent, and voltage) of Plogg [NAME/ID]

Web User Interface

- aggregated energy consumption per device
- power curves per device
- actuation of appliances
- Tips and Hints
- . . .

11/15

The Problem

System Architecture

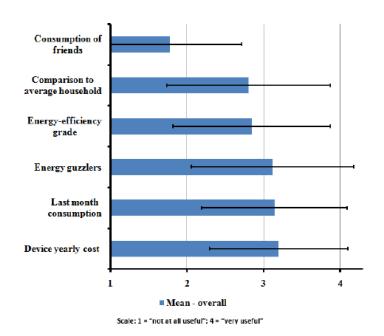
Deployment and System Evaluation

○

●○

Conclusions and Future Work

Mobile User Interface



overall power meter with level indicator

power meter per device details per device:

- power and energy meter
- costs
- actuation
- . .

User Assessment

13/15

The Problem

System Architecture

Deployment and System Evaluation O

Conclusions and Future Work

Summary

- A RESTful API has been implemented using off-the-shelf components which is easy to install and demonstrates easy extendability.
- Outlook
 - Feedback to user has to be combined with other concepts of marketing and consumer research:
 - clear value of proposition
 - goal settings
 - budgeting
 - . . .
 - · implementing engagement strategies
 - e.g. competition

References I

Weiss, Markus and Guinard, Dominique

Increasing energy awareness through web-enabled power outlets.

Proceedings of the 9th International Conference on Mobile and Ubiquitous Multimedia, Cyprus, 2010.